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Some vocabulary: “"tokens”

Words and subwords that models use as basic units

& Try it yourself:

OpenAl Tokenizer Demo - https://platform.openai.com/tokenizer
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GPT-40 is our most advanced multimodal model that’s faster and cheaper than GPT-4
Turbo with stronger vision capabilities. The model has 128K context and an October
2023 knowledge cutoff.

Learn about GPT-40 7
Model Pricing Pricing with Batch API*
gpt-4o0 $2.50 / 1M input tokens $1.25 /1M input tokens

$1.25 / 1M cached** input tokens
$10.00 / 1M output tokens $5.00 / 1M output tokens

gpt-40-2024-08-06 $2.50 / 1M input tokens $1.25 / 1M input tokens




Some vocabulary: training data

ChatGPT-3 training dataset sources

WebText2
22%

Common Crawl
60%
Books1
8%

Books2
8%
Wikipedia

3%
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Some intuition about Transformer-based models

e Key innovation: self-attention mechanism
o Captures long-range dependencies among words in the data

o Allows for parallel processing of input sequences (Scalable)
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Attending words from anywhere in the context window to learn
sentence meaning and structure

"The animal didn't cross the street because it was too tired."

The The
animal animal
didnt N\ didn't
cross cross
the N the
street \'\\ street
because \'\\ because
it it |
was was

too too

tired tired

This allows it to understand and capture meaning across long sequences.
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Competition in context windows

Gemini 1.5 Pro now with a
lon token context
window

Google's next-generation model is more efficient
at exploring, analyzing, and understanding large
data sets and documents up to 1,500 pages.

Now with better and more accurate responses for
@ prompts related to math and exploring complex
topics!




Three steps to building ChatGPT

Alignment
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Step 1. Generative Pre-training: transformer models + data

ChatGPT-3 training dataset sources

€ Books: 16%

Z_ Common Crawl: 60%
‘ " WebText2: 22%

& Wikipedia: 3%

8%
Wikipedia
3%
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The Common Crawl Dataset

ul Vast Web Crawl Dataset: The Common Crawl|
is a massive, publicly available resource.

@ LLM Training: Instrumental in training many
large language models, including GPT-3.

@ Comprehensive Coverage: Encompasses
most of the public web.

™ Enormous Scale: Comprises approximately
45 TB of text data.

advice of legal counsel before making any use, including commercial use, of the Service and/or the
Crawled Content. BY USING THE CRAWLED CONTENT, YOU AGREE TO RESPECT THE COPYRIGHTS
AND OTHER APPLICABLE RIGHTS OF THIRD PARTIES IN AND TO THE MATERIAL CONTAINED
THEREIN.

4.INTELLECTUAL PROPERTY

The Site and the Service are protected by copyrights, trademarks, service marks, and/or other
proprietary rights under the laws of the U.S. and other countries. By using or accessing the Site or the
Service you agree to comply with all state and federal laws that protect our proprietary interest in the

material appearing on the Site.

5. NOTIFICATION AND PROCEDURE FOR MAKING CLAIMS OF COPYRIGHT
INFRINGEMENT OR INTELLECTUAL PROPERTY INFRINGEMENT

We will take appropriate actions in response to notice of copyright infringement. If you believe that your

work has been used or copied in a wav that constitutes coovright infringement and such infringement is
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Next-Token Prediction

The model learns to predict the next token in a sequence, operating in a complex, high-
dimensional space.

books

/ / laptops

\\\\ exams

minds

the students opened their
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The next two phases are alignment processes.

7 Supervised Fine-tuning RLHF

Training with carefully human-labeled Reinforcement Learning with Human

data to improve model outputs Feedback to align with human values
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GPT-3
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Step 2. Supervised fine-tuning (SFT)

o Takes the pretrained model and fine-tunes it on high-quality examples
e Human annotators provide "ideal" responses to prompts

e Provides "labeled" data for the model to learn from
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Step 2. Reinforcement Learning with Human Feedback (RLHF)

e RLHF is a process that involves training a language model using reinforcement
learning.

e Trained on a "reward model" based on human responses to prompts.

@ Let's Try RLHF in Action.

Visit LM Arena -
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https://lmarena.ai/

Products Leaderboards

RLHF for Large
Language Models

Powering the next generation

of language models, today.

Book a Demo -

Companies like Scale Al provide human feedback services for training Al models

Enterprise Government Customers Resources Book a Demo -

Al Text Generator

‘@ Why is human feedback necessary for accurate llm responses?

Human Feedback Ranking

LLMs are not always truthful or aligned with human preferences

Humans enjoy giving opinions. It makes them feel important

LLMs are trained by garden gnomes, who are known to lie

Log In
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"Outlier is one of the largest employers of this new remote Al-training workforce,
promising applicants ... they can ‘get paid training cutting-edge Al on your own
schedule' and 'shape the next generation of Al with your expertise." Outlier's parent
company, San Francisco-based Scale Al, says it's building out the 'data foundry’

needed for Al. ... have been recruiting armies of remote workers to teach computer
systems how to seem more human.”

“Interviews with 10 current and former Outlier contractors across the United States
and Canada reveal a knowledge-worker gig economy plagued by a dizzying tangle of

problems, including technical and communication issues, unpredictable schedules,
Inconsistent rates, and nonpayment.”

smibast Company
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These three steps together generate ChatGPT.

Plan an itinera ry Recommend activities
Tell me a fun fact Write atext
@ Fend amessage

21
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QUESTIONS?
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LLMs in the organization

Approach

Existing service

Foundational
model

Fine-tuning an
existing model

Pros

Ease of use, delivered through
existing platforms

Leverage huge investments of
frontier tech companies

Best of both worlds in some ways
Effective vertical models IP
concerns can be manaaged

Cons
Not customized

Unknown training data
provenance (high inference
costs?) Competitive
advantage?

Some engineering required

23
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Key issues with using LLMs

Issue

Description

Data security
Intellectual property
Hallucination

Costs

Explainability

Bias

Protection of sensitive information during model interactions
Rights and ownership of Al-generated content

Generation of false or misleading information

Operational expenses for model deployment and usage
Understanding model decisions and reasoning

Inherent prejudices in model outputs and decisions

24
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Data Security Decision Tree

Is data sensitive?

Yes
|

No
I

Consider on-
premise
deployment

Cloud-based
solutions
acceptable

Implement
strict access
controls

Standard

security
practices

25
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Running models locally: LLaMa 3B

ollama run llama3.2

If interested in putting on your own computer: https://ollama.com/
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Key implications of open source LLMs

@ Security Evolution
As technology advances, concerns about LLM data security are expected to diminish

® Market Dynamics
The pricing power of Foundational LLM companies is heavily influenced by scaling laws

and the rise of open source alternatives

Resource Usage
Running this local LLM requires GPU utilization for optimal performance

28
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Intellectual Property & LLMs

An exploration of intellectual property rights in Al, including:

= Copyright considerations
l Legal frameworks

% Fair use implications
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Hallucinations: A Key LLM Challenge

N The Problem
LLMs can generate plausible but incorrect information, as seen in our "Approximate
retrieval” example

¢ The Solution
RAG (Retrieval-Augmented Generation) techniques ground responses in verified data
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RAG (Retrieval-Augmented Generation) Models

Integration

Retrieval Augmented Generation

Combines language models with
R - 2 — @ — [ external knowledge retrieval

Question Retriever Large Language Response
Model

@ Accuracy
Il . .
Grounds responses in specific,

relevant information from curated
datasets

Context

32
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Example: NotebookLM

NotebooklLM is a tool developed by Google that combines the power of large language
models with your own documents. It allows you to:

o Upload your own documents (PDFs, Google Docs, etc.)

o Ask questions about your documents

o Get Al-generated summaries and insights

o Collaborate with others on your documents

This tool retrieves information from uploaded documents and uses it to augment the
model's responses, eliminating hallucinations.

33


https://notebooklm.google.com/
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Notebook LLM demo with Al reports

Notebook LLM
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https://upenn.app.box.com/s/x5tcif5b399wczzyx6vu9s18ptbrrru1
https://notebooklm.google.com/
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$ LLM Costs: Training + Inference

7 Training

~$100M+ (example cost)

Inference

~$0.30 per million tokens (example cost)

35
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® Pricing Resources

Compare LLM Costs -

36


https://llm-price.com/
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» Key Cost Considerations

® Cost Variability
LLM costs vary significantly based on model size and usage patterns

7 Training Investment
One-time training cost represents the largest expense

Inference Costs
Ongoing inference costs are lower but accumulate with usage

il Model Comparison
Cost variations between different models can be substantial
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Cost Per Query Analysis

Google Search Revenue

Google earns approximately $0.06 per search
query

LLM Cost Challenge

What happens when Al inference costs approach
this threshold?
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the
rabbit
quickly
hopped
[SEP]
the
turtle

slowly

crawled
[SEP]

Attention: | All

, [CLS]

the
rabbit
quickly
hopped

- [SEP]

the
turtle
slowly
crawled

. [SEP]
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Neural networks are inherently a black box.
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Why is this an "empirical” question?

e These are “black-box" systems

e \What determines if LLMs are biased?

o Training data

o Human feedback
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Moderate effects on race and gender

<— More male hires — More female hires —

Adverse impact ratio
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High degree of model variance
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Highly sensitive to prompts

Framing

Gender Race
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Too good at detecting demographics?

Claude 2
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Claude 3 Sonnet
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Key takeaways

Near-term improvements

e Data security concerns will likely be addressed through technical and legal solutions

o Hallucination issues will improve with RAGs, better model architectures and training

approaches

o Cost optimization will remain a critical factor to monitor

Long-term challenges

e Explainability of model decisions will continue to be complex

o Addressing inherent biases is ongoing
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@ Back to Course Materials
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