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Abstract
This study tests the hypothesis that generating value from data, algorithms, and AI requires the
employment of domain experts who can interact with these technologies. This decentralization
of technical expertise stands in contrast to other business technologies for which the complemen-
tary skills are primarily embodied in IT specialists and it is due to the difficulties that arise when
integrating decision-making algorithms into production. Using two different workforce data sets,
I show that 1) employers have been shifting hiring towards requiring greater algorithmic exper-
tise from domain experts, 2) algorithmic expertise in frontier firms has become more dispersed
across non-technical occupations, and 3) the market assigns higher value to firms’ algorithm
investments when they have made these complementary workforce adjustments, indicating the
presence of valuable intangible assets that can yield a stream of future productivity benefits
from AI and data science investments. Finally, I show that the recent advance of no-code and
natural language tools, that make it easier for workers in non-technical occupations to perform
technical work, accelerates these changes. Implications for training are discussed.

Keywords: human capital, jobs, algorithms, AI literacy, IT intangibles, future of work, IT comple-
ments, reskilling

1 Introduction

The impact of algorithmic decision-making on organizations is a topic of growing interest (Rock,
2019; Wu et al., 2019; Agrawal et al., 2018; Zolas et al., 2021). Research in this area has focused
on the labor reallocation effects of AI and automation technologies (Acemoğlu and Restrepo, 2016;
Autor and Salomons, 2018; Brynjolfsson et al., 2018; Raj and Seamans, 2018; Eloundou et al., 2023),
as well as demonstrating that these technologies are not simply labor displacing (Agrawal et al.,
2019; Gregory et al., 2022). Instead, these technologies are also likely to generate new jobs and new
types of jobs (Bessen, 2019; Autor et al., 2022), and a key theme of the recent literature in this
area is how humans can be most effective when working alongside algorithms (Cowgill, 2018; Beane,
2019; Agrawal et al., 2019; Lebovitz et al., 2022; Babina et al., 2022).
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and Daniel Rock as well as participants at the INFORMS Conference on Information Systems and Technology,
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Economics and Artificial Intelligence, and the Temple AIML conference. I am also grateful to Zhiwei (Berry) Wang
for valuable research assistance, to Ben Zweig, Patrick Julius, and Lisa Simon for providing access to and assistance
with the Revelio data, to Dan Restuccia and Bledi Taska for providing access to the Lightcast data (when it was
Burning Glass), and to the Wharton Mack Institute for providing financial assistance.
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This paper develops new theory and evidence arguing that a complement to the effective use
of algorithms by organizations is the decentralization of “algorithmic expertise” among the firm’s
domain experts. To do so, it focuses on two types of human capital. Algorithmic expertise refers
to skills related to the use of tools that take in data and produce decision output in the pursuit
of business goals.1 This definition of “algorithms” includes data science and AI tools but excludes
tools like databases or web technologies which do not explicitly output decisions. Domain expertise
refers to the knowledge required to work in a specialized field such as nursing, sales, marketing, or
accounting. Prior work suggests that the effective application of algorithms may be unique in its
demand for both domain and technical expertise (Collins, 2004), particularly in sensitive contexts
like law or medicine, where the payoff function for a decision is difficult to define or where the
tolerance for machine-based prediction error is low (Kleinberg et al., 2018; Choudhury et al., 2020).

The employment of domain experts with algorithmic expertise differs from a workforce struc-
ture in which technical expertise is centralized in specialized technology (IT) workers and it fo-
cuses on organizational adaptation to technological change that occurs at the sub-occupational
level (Spitz-Oener, 2006). It also underscores the argument that as a general purpose technology,
AI will increasingly become a central component of all work. To explain these changes, this paper
develops theory that builds on the literature on the economics of job design and it considers how al-
gorithms differ from other information technologies like databases or websites (Smith, 1776; Becker
and Murphy, 1992; Dessein and Santos, 2006; Teodoridis, 2017; Lindbeck and Snower, 2000). It
generates hypotheses related to i) how firms adapt jobs when using algorithms, ii) how the relevant
expertise will be decentralized among non-technical occupations, and iii) how these adjustments are
likely to be associated with organizational performance.

These hypotheses are tested using databases on corporate hiring and employment. The first
database, which captures a “near-universe” of job listings issued by US firms between 2013 and 2016,
has been used in prior work on the changing skill requirements of jobs (Deming and Kahn, 2018;
Acemoglu et al., 2022) and to track the spread of new technologies (Goldfarb et al., 2023). The
second database is a seven-year panel of how technology skills have diffused across occupations from
2015 to 2021 in a large sample of public firms.2 This latter database is combined with administrative
data on the knowledge content of occupations from the Bureau of Labor Statistics O*NET database
and with corporate financial data from the Compustat-Capital IQ database.

The analysis produces four findings. First, using the job listings data, I show that employers
were increasingly searching for algorithmic expertise across a broad array of occupations in a pattern
that more closely resembles general-purpose office software skills (e.g. word processing tools) than
technical skills like database administration. By 2016, only one-third of the skills that indicate
algorithmic expertise were embedded in listings for IT workers. They were particularly likely to be

1This paper uses the term “expertise”. Whether jobs require expertise or “literacy” with the technology is an
important distinction with different policy implications but it is beyond the reach of the data sources used in this
paper so is left to future work.

2We provide details on this data source in a later section as well as an Appendix that conducts comparisons with
data collected by administrative agencies.
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embedded in listings requiring some type of domain expertise and the combination of algorithmic
and domain expertise is particularly important where workers are expected to make decisions.

These findings from the job listings data reflect changes in employer preferences, but not
whether the workforce met these changes in demand. The second analysis demonstrates similar
changes in the corporate employment data for an overlapping seven year panel (2015-2021). In public
firms, algorithmic expertise increasingly spread among business-facing decision-makers which is in
contrast to what we observe for other information technologies. These two findings are principally
descriptive, but a third finding, which can be interpreted causally under assumptions discussed
below, is that software innovations that lower the costs of working with algorithms, such as no-code
tools, increased the likelihood that employers bundled algorithmic and domain expertise.

The fourth and final analysis turns to the organizational level and indicates that the decen-
tralization of algorithmic expertise, in tandem with the complementary technological investments,
is generating productive, intangible assets for public firms. Financial markets assign higher value
to investments in AI and data science when the relevant expertise is distributed among the firm’s
business decision-makers who can apply these technologies to business goals. This interaction is par-
ticularly important for AI technologies in the later part of the panel. Robustness tests suggest that
the higher values markets assign to these assets are unique to this combination. No similar patterns
are evident for other technologies or for employee expertise in other technical skill categories.

This study contributes to two streams of academic literature. First, with its focus on em-
ployers, it contributes to a literature identifying management complements to investment in new
information technologies (Bresnahan et al., 2002; Black and Lynch, 2001; Caroli and Van Reenen,
2001; Bartel et al., 2007; Bloom et al., 2012). These prior analyses have principally been rooted
in a view of IT as a technology that automates “routine” tasks but the application of algorithmic
technologies to contexts where decision rules are not easily mapped to software has renewed the
discussion on how IT affects firms’ labor demand (Brynjolfsson et al., 2018). In doing so, this paper
contributes to an emerging literature that examines management practices that complement invest-
ment in predictive algorithms (Brynjolfsson et al., 2021; Zolas et al., 2021; Dixon et al., 2021; Xue
et al., 2022).

Second, it contributes to a literature on how the widespread adoption of algorithmic decision-
making will shape the future of work, which is becoming increasingly important as new technologies
subsume many of the tasks done by humans while simultaneously generating new areas of demand
for human labor (Agrawal et al., 2019). Most prior work on technical skills has focused on the IT
workforce (Ang et al., 2002; Mithas and Krishnan, 2008; Wiesche et al., 2019), but there has been
some work on the implications of technical skills for broader workforce outcomes Atasoy et al. (2016);
Deming and Noray (2020). Yet, the absence of more work in this area is notable given the growing
demand from students and workers from all backgrounds for “coding” and other technical skills.
These findings, therefore, contribute to our understanding of how the human-algorithm connection
will shape the demand for skills as employers embrace these technologies.
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2 Theory and Hypothesis Development

2.1 Specialization, coordination, and adaptation

The economics literature argues that tasks are organized into jobs according to three factors: special-
ization, coordination, and adaptation. How algorithmic technologies like AI and data science affect
the design of jobs may depend on these three factors. Specialization allows for productivity gains, as
in the medical field where AI algorithms analyze medical images, freeing radiologists to concentrate
on complex cases (Smith, 1776). AI can lower coordination costs by enhancing the synchronization
of interdependent tasks, exemplified by supply chain management where predictive models can ef-
ficiently align inventory, supply, and delivery schedules (Becker and Murphy, 1992). A third factor
is adaptation, with AI excelling in tailoring tasks to local information (Dessein and Santos, 2006).
An example is when marketing professionals leverage AI to create personalized advertising based on
consumer behavior data. These adaptive capabilities are particularly valuable where the application
of local knowledge is critical.3

Balancing specialization and coordination has been a central theme of the literature on IT and
jobs because new technologies incentivize employers to adjust the mix of skills within occupations
(Spitz-Oener, 2006). Although specialization yields greater productivity in many contexts, Lindbeck
and Snower (2000) theorize that task-based complementarities in knowledge-rich jobs have shifted
work away from specialization towards more “holistic” forms of work in which workers handle a di-
versity of tasks. Multi-task work raises productivity when there are informational complementarities
among tasks because productivity in one task can be interdependent with activity levels in others
(Postrel, 2002).4 Computers complement educated workers because by automating routine tasks,
they raise the productivity of front-line workers who can balance a diverse set of tasks (Autor et al.,
2003; Berman et al., 1994; Bresnahan et al., 2002; Bartel et al., 2007).

The balance between specialization and coordination has broad implications for IT and job
design, but this analysis focuses on data-driven workflows which are increasingly common in or-
ganizations and where effective synthesis of domain and technical expertise has been a persistent
challenge. For example, consider one well-recognized and standardized process used to balance data
modeling decisions with business objectives, “CRISP-DM” (Cross Industry Standard Process for
Data Mining) (Wirth and Hipp, 2000; Chapman et al., 2000).5 This model separates the data min-

3There are parallels for these arguments in the construction of teams. Using academic publication data, Teodoridis
(2017) shows that a decrease in the cost of acquiring new technical knowledge changes the optimal mix of expertise
when constructing diverse teams.

4Relative to changes in occupational demand, sub-occupational shifts have been less widely documented because
administrative data agencies do not capture it well. To fill this gap, scholars often turn towards alternative data
sources. An example is (Spitz-Oener, 2006), who uses German data to show that within-occupational change was
happening quickly in occupations that were being computerized. In that sample, within-occupational change ac-
counted for 36% of educational upgrading.

5Poll results from 2014 indicate that it is the most common method used for data mining and data science
projects, with about half of all respondents reporting using CRISP-DM and the other half divided over other
methods. See https://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-
projects.html, last visited on Jan 4, 2023.
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ing process into six discrete steps: 1) Business Understanding, 2) Data Understanding, 3) Data
Preparation, 4) Modeling, 5) Evaluation, and 6) Deployment. Domain expertise in CRISP-DM is
conceptualized as residing outside of technical expertise and being drawn from other experts within
the organization or from outside clients. However, coordination between workers with different ex-
pertise is costly and studies of CRISP-DM have identified coordination costs across stakeholders as
a key weakness of this paradigm (Saltz, 2021).

Both the importance and the difficulties of embedding domain expertise in a data-driven
decision process may be further amplified when using data science and AI technologies because
these technologies i) directly produce decisions as output and ii) these decisions are not always
cognitively “routine” (Brynjolfsson et al., 2018; Agrawal et al., 2018). For non-routine decisions,
there can be high costs to separating technical and domain expertise, as in the case of a radiologist
working with AI-based diagnostic recommendations.

2.2 Hypothesis development

Reflecting this tension, prior work has confronted the challenge of injecting domain expertise into
the data-driven workflow (Mao et al., 2019; Choudhury et al., 2020; Park et al., 2021). This work
argues that the iterative nature of data exploration, experimentation, and learning required for
data science favors generalists, who have a diversity of skills, over specialists (Colson, 2019). The
emphasis on decision-making, the need for iteration, and the non-routine mapping between the input
data and output decisions sets these technologies apart from other information technologies where
the output (e.g., websites, cloud storage, databases) is an input into an employee’s decision-making
process rather than a decision itself. A salient example is the “data scientist” job title itself, which
by definition, combines technical and statistical skills with domain expertise (Davenport and Patil,
2012; Provost and Fawcett, 2013). The importance of domain expertise for effective data science
has been discussed online6, in industry panels7, and in the press (Oostendorp, 2019).

But beyond data scientists, workers who can couple domain expertise with technical skills are
becoming important to many algorithmic decision-making contexts (Jha and Topol, 2016).8 Users
of machine learning tools in high-stakes contexts must evaluate trade-offs when choosing which
data to include in a model, how to construct model features, or how to assign value to the costs of
prediction errors (Kleinberg et al., 2018; Cowgill, 2018; Cowgill et al., 2020). Research situated in
pharmaceutical industries has shown the importance of embedding the relevant human capital in

6For example, see: Is domain knowledge necessary for a data scientist? Accessed on March 11, 2019.
7A video of one such industry panel is captured here: https://youtu.be/qKcUsIqoSHE.
8The educational community has also started to respond to these changes. For instance, the notion that data-

driven employers increasingly demand “bilingual” workers (i.e. individuals who have both technical skills and domain
expertise) was underscored by an announcement from MIT on their investment in a new College for Artificial Intelli-
gence. The goal of the college, said L. Rafael Reif, the president of M.I.T., is to “educate the bilinguals of the future.”
He defines bilinguals as people in fields like biology, chemistry, politics, history and linguistics who are also skilled
in the techniques of modern computing that can be applied to them. Additionally, it is expected that the “bilingual”
graduates who emerge from this new College — combining competence in computing and in other fields — will be of
enormous value to employers. New York Times, Oct 15, 2018. MIT Plans College for Artificial Intelligence, Backed
by $1 Billion.
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downstream occupations (Wu et al., 2019) and in healthcare, Jha and Topol (2016) and Lebovitz
et al. (2022) describe the challenges healthcare workers face when interpreting the accuracy of
machine learning tools and output. The first hypothesis tested in this paper is:

H1: Skills related to algorithms are more likely to be bundled with domain expertise than
those related to other information technologies.

This hypothesis, based in the balance between specialization and coordination, is about
whether these two skills are likely to be bundled, but does not make predictions about which
occupations will receive this bundle. Adaptation provides a context in which to theorize about the
control of task bundles in work environments. An instructive example here is “typing pools” which
existed solely to provide typing services within the organization. Over time, the typing task eventu-
ally became part of the knowledge worker’s job because local adaptation is important when creating
text documents.9 Similarly, where domain expertise helps with localized decision-making, organiza-
tions may prefer that non-technical domain experts – like those in finance and human resources –
receive these skills. Conversely though, AI can also substitute for some forms of domain expertise in
areas such as foreign language translation which may move the bundle away from domain experts.
Which occupations get the bundle, therefore, is ultimately an empirical question.

H2: Algorithmic skills are likely to be bundled in occupations where domain expertise
and decision-making are both important.

These trade-offs are not static. The job design considerations discussed above depend upon
the costs of becoming proficient with algorithmic tools. If the costs of acquiring technical skills are
high, it will be difficult and expensive to find domain experts with technical expertise and employers
may forego any productivity gains associated with bundling these skills. On the other hand, the
barriers to use for many tools is falling as producers compete to speed adoption of their products
in the workplace. Examples of this are prevalent, and include the embedding of complex logic in
standardized software packages (Rock, 2019), the proliferation of no-code tools like Tableau, and
most recently, the growing conversational abilities of large language models like OpenAI’s Data
Analyst GPT that enable workers to do data analysis with virtually no coding background.

H3: Algorithmic skills are more likely to diffuse into non-technical occupations as the
cost of acquiring these skills falls.

Firms may have strong incentives to pursue these workforce changes. Prior work has shown
that productivity-enhancing workforce adjustments are needed to realize financial returns to IT in-
vestments (Black and Lynch, 2001; Bresnahan et al., 2002; Caroli and Van Reenen, 2001; Bresnahan
et al., 2002; Bartel et al., 2007; Bloom et al., 2012). For computing technologies that can perform rou-
tine tasks, the literature has shown that allocating decision authority to front-line decision makers

9I am grateful to Anna Salomons for suggesting this instructive comparison.
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yields higher productivity levels (Bresnahan et al., 2002), and particularly in turbulent environments
where the value of decisions depends on rapidly changing external conditions (Mendelson and Pillai,
1998; Pavlou and El Sawy, 2006; Black and Lynch, 2001; Bresnahan et al., 2002).

For AI and data science technologies that make non-routine decisions, investors may anticipate
greater value from firms that also employ personnel who understand how these tools can be applied
to business goals. These adjustments may be costly, in the form of employers having to navigate
more competitive labor markets to hire workers with these skills, but higher values would reflect
the production of valuable intangible assets that the market expects to eventually yield a stream
of benefits. The literature referenced above suggests that the application of data science and AI in
a production context, by introducing new challenges related to coordinating domain expertise with
effective data modeling, analysis, and application, amplify the productivity benefits that arise when
hiring employees that can synthesize both types of knowledge.

H4: Financial markets assign higher value to investments in algorithms when the com-
plementary skills are dispersed among occupations that make business decisions.

The next section describes the databases used to test these four hypotheses.

3 Data sources and key measure construction

3.1 Key data sources

The empirical tests of these relationships are based on data sources that provide information on a)
how employers are adapting jobs to algorithms and b) how the skill composition of the workforce is
changing in response. These are supplemented with financial data from public firms to assess how
these technologies and workforce changes are connected to the value that investors assign to firms.

3.1.1 Job listings database

When employers have job vacancies, they post details on their corporate web sites or on job boards.
These listings identify the employer and the job title, the geographic location of the position, the
skills and education sought from candidates, offered wages, and other fields relevant to the search
process. I use listings to measure when skills first appear in online job ads and how skills co-occurred
in these listings with other skills.

This study uses data from Lightcast, a labor market analytics firm that 1) uses software to
crawl a “near-universe” of online job postings and 2) uses natural language processing to parse skills
and other job information.10 This data provider collects and standardizes data from over 17,000
job boards and corporate web sites, and these data are processed to ensure that a job listing is
not counted multiple times if an employer posts it several places on the web. The processed data

10Until June of 2022, Lightcast was known as “Burning Glass Technologies” and is referred to as such in much of
the prior work that has used this data set. In this paper, for consistency, we use the name Lightcast throughout,
including when referencing the use of these data in prior papers.
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include posting date, job location (metropolitan area), employer, job title, educational requirements,
certifications required, and skill expectations for each job. Several studies have used these data to
study labor markets (Hershbein and Kahn, 2018; Deming and Kahn, 2018), including how AI related
skills spread across jobs and industries (Acemoglu et al., 2022; Goldfarb et al., 2023).

Lightcast associates each listing with a BLS O*NET code and employers are tagged with a
North American Industry Classification Systems (NAICS) industry. Job openings list skills, such as
Python, Random Forest, Chemistry, Supply Chain, Accounting, Data Science, Teamwork, or Com-
munication which are standardized using a skill dictionary maintained by Lightcast. These skill
data are not the same as job “requirements”. Employers can omit skills from listings, some skills
may be assumed but not listed, and successful candidates may not need all of the skills in a listing.
Nonetheless, employers are likely to be thoughtful about the skills they place in listings because
including or omitting a skill can attract or repel the wrong type of applicant.

The data collection process raises questions about which industries and occupations it covers.
However, prior academic work has provided thorough information on the sampling properties of
the data, so I do not duplicate those comparisons here.11 Key findings from these comparisons are
that these listings data are over-represented in computer and mathematical occupations, as well
as management, health care, business, and financial occupations. They under-sample blue-collar
occupations.

3.1.2 Corporate employment database

The corporate employment data were provided by Revelio Labs, a workforce intelligence company.12

Their databases are constructed from a variety of sources including online career profiles and federal
databases.13 These data are similar in their informational content to that posted on online profes-
sional networks such as LinkedIn and they cover a large fraction of white-collar work in the US. The
data cover both public and private US firms but the analysis sample is limited to public firms so
that they can be connected with financial market data. This data source has been less widely used
in the literature than the job listings data, so in Appendix A, I present comparisons of these data
with administrative data from the Bureau of Labor Statistics. Like the Lightcast data, these data
are over-sampled in management, business, and technology occupations and under-sampled in areas
such as agriculture and manufacturing which is consistent with the greater use of online professional
platforms in knowledge-intensive occupations.

These workforce data are used to generate measures of annual firm-occupation-skill employ-
ment activity from 2008 through 2021.14 This data panel provides information on how specific tech-

11See, for example, Appendix A of Deming and Kahn (2018) who compare these Lightcast data with administra-
tively collected data sources.

12See https://www.reveliolabs.com/
13Scholars have argued that the lack of firm-level data on workforce skills is a significant constraint for understanding

how firms are adjusting to technological change (Frank et al., 2019; Raj and Seamans, 2018).
14The provider notes potential issues with the reporting of skills in the data. The profile data is federated from

multiple sources that gather publicly available profiles. However, around May 2021, user skills disappeared from the
majority of public profiles. The provider imputes (predicts) skills after that date and notes whether the skill on a
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nical skills, like “machine learning”, diffuse across occupations and employers. Moreover, the data
contain CUSIP identifier codes which allow employer records to be merged with external financial
databases such as the Compustat-Capital IQ data.

3.1.3 Supplementary data sources

To identify occupations requiring domain expertise, the O*NET codes in the job listing data are
connected with the Occupational Information Network (O*NET) content model published by the
Bureau of Labor Statistics.15 The O*NET database has been very widely used in academic re-
search,16 is government administered, collected by surveying occupational experts, and provides
information on employment, wages, and the work content of US jobs. The O*NET taxonomy re-
ports work requirements including the knowledge required for different occupations.17 Finally, some
analyses also use financial and employment data from Compustat-Capital IQ, which was collected
through the WRDS data service.

3.2 Construction of sample and key measures

3.2.1 Sample construction

For the job listings analysis, the sample includes all listings in the data set from the months ranging
from January 1, 2014 to June 1, 2016 for a total of 30 months of job listings data. The number of
listings for any given month ranges from just under 2 million listings to up to 2.5 million listings
for a total sample across the 30 months of 60,769,351 listings. However, as detailed below, the
regression-based analyses on this data restrict this sample to a single month and to job listings with
a specific set of skills which significantly lowers the sample size for those analyses.

The Revelio workforce sample, which forms the core of this analysis, includes firm-occupation-
year-skill counts for the years 2015 to 2021. To join these figures with financial data from Capital
IQ, the sample is limited to public firms, producing a sample size of 7,198 firm-years. Table 1 reports
summary statistics for a single year (2018) of this panel. The statistics are reported in logs because
they are included in logs in the multi-variate regressions. Firms in this sample are large, with an
average market value of over 57 billion dollars and almost 30,000 employees. The average firm in this
sample has around 1,000 IT workers. Table 2 shows the distribution of these firms across NAICS
2-digit industries. Although there are firms in every major sector, the Manufacturing, Information,
and Finance and Insurance industries together comprise almost 90% of the overall sample. The
construction of key variables used in the analysis is described below.

profile is reported or imputed. However, I do not know the imputation algorithm, and so I limit the analysis to the
years through 2021.

15See https://www.onetonline.org.
16One notable example of its use for examining technical change is Autor et al. (2003).
17The O*NET data is periodically revised to reflect the changing structure of the US workforce. Although it was

revised in 2019, I use the version from before this revision to match the O*NET codes in my version of the Lightcast
data, which were based on the taxonomy before the O*NET revision took place.
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3.2.2 Algorithmic expertise (ALG and ϕALG)

A key challenge when converting data on workforce skills into measures for empirical analysis is the
mapping of skills to skill groups.18 Recent published papers that use large quantities of archival,
digitally collected workforce data have used manual mappings of skills into technology categories.
For example, Abis and Veldkamp (2024) manually assign skills to “Data Management”, “Analysis”,
“Old Technology”, and “AI” categories and Goldfarb et al. (2023) select a cluster of skills related to
machine learning technologies for their analysis. Deming and Kahn (2018) curate words and phrases
in the Lightcast data associated with different job skills, including cognitive, social, character, and
computer categories. The literature on the impact of AI technologies on labor displacement has also
generated their own rubrics for measurement (Brynjolfsson et al., 2018).

This analysis takes a similar approach, relying on the grouping of base-level skill categories
into higher-level categories for technology measurement. However, it uses categorizations generated
by the data providers themselves, who use clustering methods to group skill categories into different
technology areas like “data science”, “AI”, or “Big data”. Appendix B delineates the skill categories
that fall into each of the technological categories used in this analysis. Examples of these skill
categories include machine learning, business analytics, julia, and natural language processing and
each of these categories themselves contain more detailed skills. For instance, machine learning is
a skill category that includes skills like “deep learning” and “supervised learning” within it. Skills
in the AI and data science categories are used to develop indicators of algorithmic expertise at the
individual level and the organizational level.

At the worker level, a record (job listing) is denoted as having (requiring) algorithmic expertise
(ALG, a binary indicator) if it has at least one skill that falls into this category.

At the organizational level, measures of algorithmic expertise are constructed by identifying
major occupation groups that are in the top quartile of all occupations in terms of their domain ex-
pertise requirements and the importance of decision-making for that job.19 Then, for these decision-
makers, %ALG is computed as the fraction of employees in this group with algorithmic expertise.
Finally, for each organization i in year t, a standardized measure of algorithmic expertise (ϕALG) is
computed as:

ϕALG
it =

(%ALGit −MEAN(%ALG))

STD(%ALG)
(1)

Organizations where algorithmic expertise is decentralized among the firm’s decision-makers have
higher ϕALG values. For the robustness tests, similar measures are constructed for other technological
categories (e.g., ϕCLOUD).

18Indeed, because of growing interest in the “future of work”, the construction of taxonomies that makes sense of
emerging sources of skills data is an active and ongoing area of research among businesses and information agencies.
For example, see recent efforts by Nesta in the UK or Lightcast.

19These O*NET major occupational groups are: 11-0000 (Management), 13-0000 (Business and Financial), 17-0000
(Architecture and Engineering), 19-0000 (Life, Physical, and Social Science), 23-0000 (Legal), and 29-0000 (Healthcare
Practitioners and Technical).
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3.2.3 Domain expertise (DOM) and Decision making (DMK)

Domain experts are defined as employees who have knowledge of a specific discipline. The mea-
surement of requirements for domain expertise in a job is constructed to be consistent with the
measurement of algorithmic expertise. A binary indicator of whether a job requires domain exper-
tise (DOM) takes the value 1 if an employee reports having at least one type of domain knowledge
in their skill set where the list of potential domain knowledge areas is extracted from O*NET, which
in its dictionaries, identifies the possible knowledge domains with which US-based jobs may require
familiarity.20 These domains are extracted from the “Knowledge” table in O*NET, which delineates
“organized sets of principles and facts applying in general domains.”21 From the full list, Computers
and Electronics, Engineering and Technology, Telecommunications, and Mathematics were removed
because they overlap with measures of algorithmic expertise.22

The importance of Decision-making for an occupation (DMK) is retrieved from the O*NET
database which provides this measure on a scale of 1 through 7 for each six-digit occupation.

3.2.4 Additional job characteristics

Beyond algorithmic and domain expertise, the analysis uses indicators of skills related to cognitive,
social, character, and management job attributes. The construction of these attributes was based
on prior work that uses the Lightcast data source to construct these measures (Deming and Kahn,
2018). As with measures of algorithmic and domain expertise, records are coded as needing these
attributes if the listing contains at least one related skill.23

3.2.5 Employers’ IT investments

Obtaining consistent, firm-level measures of IT investment spanning multiple years has been a
persistent challenge in the academic literature (Tambe and Hitt, 2012). IT investments are not
consistently recorded on balance sheets, so scholars have leveraged alternative sources to create

20See https://www.onetonline.org/find/descriptor/browse/Knowledge/.
21The domain categories identified in the O*NET knowledge set are Administration and Management, Biology,

Building and Construction, Chemistry, Clerical, Communications and Media, Customer and Personal Service, De-
sign, Economics and Accounting, Education and Training, English Language, Fine Arts, Food Production, Foreign
Language, Geography, History and Archeology, Law and Government, Mechanical, Medicine and Dentistry, Personnel
and Human Resources, Philosophy and Theology, Physics, Production and Processing, Psychology, Public Safety and
Security, Sales and Marketing, Sociology and Anthropology, Therapy and Counseling, and Transportation.

22It is important to contrast this approach with one in which jobs would be identified as requiring domain expertise
based solely on titles. Such an approach would impose the restriction that jobs with the same title cannot differ in
their knowledge content. Relaxing this restriction is important for this analysis because it allows for an analysis of
the diffusion of new skills into occupations (i.e. sub-occupational change) rather than changes to the occupational
mix which is central to this analysis.

23Deming and Kahn (2018) construct these job attribute measures based on whether a listing has a skill related
to the attribute. These skills, as reported in Table 1 of that paper, are: cognitive [problem solving, research, analyt-
ical, critical thinking, math, statistics], social [communication, teamwork, collaboration, negotiation, presentation],
character [organized, detail oriented, multitasking, time management, meeting deadlines, energetic], and management
[project management, supervisory, leadership, management (not project), mentoring, staff]. Deming and Kahn (2018)
also include writing, customer service, financial, computer, and software job attributes in their analysis but those
attribute families are not included in this analysis.
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proxy measures, such as hardware investment measures collected by marketing surveys, IT keywords
referenced in legal filings, and IT employment or salaries (Lichtenberg, 1995; Brynjolfsson and Hitt,
1996; Tambe, 2014). The rationale behind the last approach is that human capital is the largest
component of a firm’s digitization investment and it has become even more important for AI and data
science investment because much of that software stack is open-sourced, leaving no investment trail,
and because much of the hardware is cloud-based and poorly measured by instruments that record
the firm’s owned servers and PCs. Conversely, most frontier software requires technical expertise
to install and maintain, so quantities of complementary, technical human capital may be the most
accurate available proxy measure of a firms’ technology investments.

This approach is used to generate measures of firms’ technology assets. It follows prior work
where proxy investment measures are constructed as quantities or intensities of skills relevant to
the technological domain (Tambe and Hitt, 2012).24 This view of the dichotomy between technical
workers and other non-technical occupations is similar to work that considers the employment of
technically skilled workers as the main investment into the construction of digital assets that can be
subsequently deployed by an organization to achieve its business goals (Hall et al. (2000) calls this
“e-capital”). Investments in aggregate IT or its sub-categories (e.g., Alg IT , AI, Data science) are
computed as the quantity of relevant skills in the firms’ IT workforce in a given year. Because the
firm-level regressions include employment measures, the “stock” of skills in a technological domain
can be interpreted as the intensity of investment in that domain.25

3.2.6 Financial variables, assets, and industry classification

The Compustat-Capital IQ data are used to construct employer-year measures for total market
value, employment, industry classification, the value of PPE (property, plant, and equipment), and
other assets. As discussed above, the use of Capital IQ financial data necessitates limiting the
sample to public firms. Industry variables for these firms are retrieved at the four-digit NAICS level
(North American Industry Classification System). Total market value is computed as described in
an existing literature relating intangible assets to firm value (e.g. see appendix describing variable
construction in Brynjolfsson et al. (2002)). It is computed as the value of equity at the end of the
fiscal year plus the value of preferred stock plus total debt which represents the total worth of a
firm as assessed by the financial markets. Assets are computed as total assets minus PP&E.

24Like most firm-level measures, this approach records investments with measurement error. See Appendix B for a
brief discussion.

25The main findings are robust to an alternative construction of this measure based on quantities of technical
workers with at least one skill in the relevant domain which has a slightly different interpretation (e.g. quantities of
AI engineers, rather than the intensity of AI skills in the tech workforce). Those results are not shown due to space
constraints but are available upon request.

12



4 Results

4.1 Model-Free Evidence

4.1.1 The growth of algorithmic expertise in job listings

Figure 1b illustrates growth in the rate at which algorithmic skills appear in listings within the
sample period spanning the years 2013 to 2016. Each x-axis tick corresponds to one month and
the y-axis is the coefficient estimate (β) from the logistic regression ALGi = βtti + ϵi where t is a
vector of dummy variables for months since January 2013 indicating when a vacancy was posted
and ALG indicates whether an algorithmic skill appears in a job listing. This figure indicates that
the likelihood of an algorithmic skill appearing in a non-technical occupation listing rises steeply
during the early part of the sample.

Figure 2a shows the extent to which specific technology skills, including but not limited to
algorithmic skills, are bundled together with domain expertise in job listings from one month of
the Lightcast data (January 2016). Skills with higher values (reaching further to right) tend to
appear with domain expertise in listings. Skills colored dark blue are those that correspond to
algorithms. Algorithmic skills are more commonly bundled with domain expertise and along this
metric, appear to have more in common with skills like Excel and ERP systems that are commonly
used by business-facing occupations.

In Figure 2b, a higher value indicates skills more likely to appear outside IT occupations.
Algorithmic skills, colored in dark blue, are more commonly found in job listings for non-IT occupa-
tions than other technical skills. Skills related to predictive analytics, data science, and data analysis
are only slightly less dispersed than skills related to the Microsoft Office Suite, which is consistent
with the claim that employers are increasingly bundling algorithmic skills in occupations where
domain expertise is embedded. These figures indicate that employers are increasingly searching for
algorithmic skills outside of IT specialist occupations.

4.1.2 Algorithmic expertise in business occupations

Job openings are valuable because they (i) indicate employer preferences and (ii) immediately reflect
changes being made by employers. In that sense, they serves as a leading indicator of labor market
changes. However, they cannot say whether the job listings indicate hard requirements or a “wish
list” from employers, or whether the vacancies requiring these skills are even ultimately filled. Next,
I turn to corporate workforce data to investigate whether changes in employer preferences were met
by the workforce. The results from this analysis are shown in the four quadrants of Figure 3.

Figure 3a illustrates how the dispersion of different technical skills in non-technical occupations
changes over time in these firms. The y-axis is the intensity with which a skill appears in these
occupations and levels are depicted relative to their 2008 values. The trend for algorithmic skills,
depicted in blue, indicates steady growth in the rate at which AI and data science skills have
penetrated these occupations, which is consistent with the demand-side findings from Figure 1b. By
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2021, these skills appeared in 10% more non-IT occupations than they did in 2010. In contrast, skills
in technologies related to networks and the cloud became increasingly specialized. Fewer workers in
these non-technical occupations needed skills related to these technologies. The incidence of mobile
skills remained flat.

Figure 3b shows how the organizational measure of algorithmic skill defined in Equation 1
(ϕALG) varies across industries and time. Unsurprisingly, it is highest in the Information, Profes-
sional Services, and Finance industries. This is consistent with evidence on the prevalence of these
technologies in these industries as reported in the press (Lohr, 2024). Retail has climbed rapidly
reflecting the growing use of consumer data for prediction. Levels are lower in Healthcare although
they have been climbing, reflecting the growing use of data science and AI in healthcare.

Figure 3c depicts annual changes in ϕALG where firms are separated into quartiles according
to their market values in the final year of the sample (2021). ϕALG is highest in higher value firms
and the differences are largest between the top and bottom quartiles in the earlier years of the
sample, as would be consistent with an environment where workers with these skills are a scarce
resource that higher value firms are better positioned to attract. In the last few years of the sample,
however, ϕALG converges across quartiles, suggesting that supply-side adjustments have made it
easier for employers with less resources to attract these workers. The fourth quadrant (Figure 3d),
using data from the final year of the sample, plots firms’ investments in algorithmic technologies
against ϕALG where the size of the bubble reflects the market value of the firm. The largest circles,
colored in blue, are those commonly referred to as “big-tech” firms. We can see that firms tend to
contemporaneously invest in these technologies and in employing business-facing workers who have
the skills to apply these technologies to business problems.

4.2 Correlation tests between algorithms and domain expertise in job listings

The model-free evidence presented above suggests that both employers and non-technical workers
have been shifting towards greater algorithmic expertise. To formally test the hypotheses presented
in the theoretical discussion, I embed these measures in a regression framework.

Figure 4a summarizes tests of whether algorithmic skills are more likely than other technologies
to appear in job listings requiring domain expertise. The sample is a single month of data (Jan
2016), and the unit of observation i is the job listing. The dependent variable is a binary indication
of whether a listing i requires the applicant to have job attributes related to domain expertise
(DOM).

DOMi = αAALGi + αDDATi + αNNETi + γi + ϵi (2)

The right-hand side includes measures of whether the job listing reflects a need for algorithmic
skills as well as, for comparison, skills in two comparison technologies, databases and networks. For
comparison, other models shown in Figure 4a substitute as the dependent variable i) cognitive
attributes, ii) social skills, iii) character, or iv) management skills. Equation 2 also includes a vector
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of control variables (γ) that includes detailed job title26, 4 digit NAICS industry, and a measure of
the logged total number of skills in the listing where i indexes the listing.

Figure 4a depicts estimates of αA from Equation 2. There are positive correlations between
algorithmic skills and domain expertise. Because job-title fixed effects are included, these correlations
mean that algorithmic skills are particularly likely to be bundled in jobs requiring domain expertise
(Hypothesis 1). The full form of the regression estimates, which can be found in Appendix C,
indicates negative correlations with database tasks, which is consistent with that class of skills being
more specialized within the IT workforce. We can also observe positive correlations between the use
of algorithmic technologies and cognitive skills and negative correlations with management-related
job attributes. This negative relationship suggests employers are not bundling people leadership
(character and management) with algorithmic skills.

The next analysis akss where in the data decision-making pipeline this combination of skills,
domain expertise and algorithmic skills, is valuable: i) data management, ii) data modeling, iii)
analytics, iv) visualization, v) decision-making, and vi) presentation. In the logistic regression used
to evaluate this relationship, DATA.TASK corresponds to any of these pipeline stages, generating
six separate regressions.

DATA.TASKi = βDDOMi + βAALGi + βDA(DOMi ×ALGi) + γi + ϵi (3)

Figure 4b illustrates βDA as computed from these regressions. The estimates on Presentation and
Decision-making indicate that employers are increasingly searching for candidates with both algo-
rithmic and domain expertise where workers need to make decisions. In contrast, this combination
of skills is negatively correlated with tasks related to Data management and Data modeling. These
tasks require large numbers of technology skills that may not favor generalists who can bring a
diversity of skills to the task.

4.3 Algorithms and domain expertise in business occupations

Turning towards workforce composition, Table 3 reports correlations between whether significant
decision-making is required in non-technical occupations and whether algorithmic expertise has
diffused into them, accounting for firm, occupation, and year differences. All regressions are at the
firm-occupation-year level using a panel spanning the years 2015 to 2021. Column (1) indicates that
occupations that require greater decision-making are more likely to report having algorithmic skills
(t=3.50) (Hypothesis 2). This remains true after including firm fixed-effects (column (2)) which
mitigates the concern that firms that rely more heavily on algorithms simply have more workers
who make decisions.

The relationships discussed to this point are principally correlational, but columns (3) and (4)
test the proposition that a fall in the cost of using these tools accelerates the diffusion of these skills
across occupations. Columns (3) and (4) separate algorithmic skills according to whether the skill

26The data provider standardizes job title at a granular level. Exemplar job titles are "Inventory Clark" and "Ux
Developer".
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corresponds to a “no-code” technical tool. No-code tools are a minority of algorithmic skills so the
main-effect is negative (t=-28.88). Column (4), however, indicates that tools with lower costs of use
accelerate more quickly into decision-making occupations (t=4.29) (Hypothesis 3). This finding
is supportive of a causal relationship under the assumption that these tools essentially perform the
same function as their code-based counterparts. If these two categories of tools perform different
functions, it could reflect demand-based differences and threaten a causal interpretation.

Columns (5) and (6) aggregate the data by occupation and test the following relationship
at the organizational level: ϕALG

it = ALGit + γit + ϵit. A higher ϕALG measure indicates that a
greater fraction of workers in the firm’s non-technical occupations require domain knowledge and
algorithmic expertise, i and t are the firm and year respectively, and γ is a vector of controls that
account for differences in size, assets, employment, and industry. The estimates show correlations
between algorithms and ϕALG, after conditioning on other firm characteristics like size and industry.
This also persists after firm fixed-effects are included (t=2.34), which means that firms that rely
on algorithms have a greater degree of algorithmic expertise in decision-making occupations, even
after accounting for other static sources of firm differences. The findings in columns (5) and (6)
are consistent with the assertion that employers see value in coupling algorithmic investments with
personnel who have the skills to understand how these algorithms can be applied to non-technical
business objectives.

4.4 Algorithms, business occupations, and financial value

Another test of whether these investments are complementary is by looking at how they are valued
by financial markets. The main regression is a test of a firm’s market value on its assets. Prior work
has used a hedonic market value framework to decompose a firm’s value into its component parts
and to test whether financial markets can be used to uncover the presence of valuable but otherwise
intangible assets that contribute to firms’ productive capacities (Brynjolfsson et al., 2002). Market
value is also a particularly useful dependent variable for an analysis of AI and data science returns
because firms require time to adjust new technologies to their workflow and the literature suggests
that firms are not yet consistently realizing value from data science and AI investments. Investors,
however, assign value to assets based on the future stream of benefits they will produce. The key
regression used to test for the presence of workforce complements to algorithmic decision-making is:

Log(MV )it =Log(AT )it + Log(PPE)it + Log(IT )it+

Log(ALG)it + ϕALG
it + (Log(ALG)it × ϕALG

it ) + γit + ϵit
(4)

In equation 4, i indexes the firm and t is year. MV is the firm’s market value, and PPE and
AT are capital and other assets, respectively. IT is a proxy measure of the firm’s aggregate IT
investment, ALG is a proxy measure of the firm’s investment in algorithms, ϕALG is the standardized
organizational measure of algorithmic expertise, and γit is a vector of fixed-effects including year,
employment size and depending on the specification, industry at the four-digit NAICS level or
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employer fixed-effects.
Table 4 reports results from estimating Equation 4 on a seven year panel of public firm invest-

ments (2015-2021). Columns (1) through (3) in Table 4 have year and 4-digit industry fixed-effects.
Column (1) reports results of market value on measures of IT investment, assets, capital (PPE),
and employment. All of these variables are entered in logs. As has been found in prior work, the
estimates suggest that financial markets assign economic value to investment in digital technologies
(t=3.79). The next column adds a measure of specific investment in algorithmic technologies. After
adding this measure into the regression, the coefficient on general IT capital falls to zero which
suggests that the market returns to IT investment are principally from firms that invest at the
frontier, as represented in this panel by AI and data science investments (t=3.93).

Column (3) reports estimates from the full form of equation 4 that includes the interaction be-
tween algorithms and ϕALG. The main effect of algorithms is similar to column (2) (t=3.80) but the
interpretation of the interaction term is that these investments are valued an additional 15% higher
in firms where ϕALG is one standard deviation higher (t=2.67). These estimates support the hy-
pothesis that firms contemporaneously investing in ALG and ϕALG are building valuable intangibles
that will be useful for producing a stream of AI goods and services in the future (Hypothesis 4).
Column (4) uses firm effects instead of industry effects. Including firm effects drives the coefficients
on algorithms, ϕALG, and the interaction term to zero. One interpretation of this finding is that
there are high adjustment costs for firms trying to build these assets. Within the relatively limited
range of this panel, unobserved differences across firms explain most of the heterogeneity in firms’
abilities to build these assets. One way to further probe this argument is to separate extensive and
intensive margins of investment for this technology. Column (5) substitutes a measure indicating
whether ϕALG is above or below the mean for firms in the sample. The results are similar to those
in column (3) (t=3.00). This binary construction eliminates most within-firm variation and shows
that across-firm differences are more important for these estimates than firm’s abilities to change
their asset mix within the relatively small number of years covered in this sample.

These analyses suggest that within the last decade, (i) employers have been adjusting can-
didate search to find domain experts with expertise in algorithms, (ii) skills related to algorithms
spread to business-facing occupations, and (iii) employers that made these investments jointly with
matching technological investments realized higher market values, suggesting the presence of valu-
able intangible assets in these firms. Together, this evidence supports the primary conclusion of the
paper that greater level of technical skill in a firm’s business and management layer is a valuable
complement to its use of algorithms in the decision-making process.

The average effects computed in the sample above obscure heterogeneity along different di-
mensions. Figure 5 reports estimates on the main interaction term for Equation 4 where the sample
is split by employment size category (separated by tercile). The financial rewards associated with
investment in workers with these skills are higher for larger firms in the sample. This may reflect
the higher coordination costs faced by workers in large firms or alternatively, it may reflect the
advantages that larger firms enjoy when hiring such workers or installing these technologies. The
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first explanation can be expected to persist over time, but the second could fade as the supply side
of the market adjusts as suggested by Figure 3c.

Turning towards the temporal dimension, the analysis until this point has grouped data science
and AI investments into a single category even though the frontier of IT investment has rapidly
moved from data science to AI during the course of the panel. Table 5 separates these investments
and divides the panel into an earlier and later time period comprised of the years before and after
2018. The first two columns suggest a relationship between data science investment and the firm’s
market value during the early period (t=5.21). There is no correlation with AI in this period,
however. In the later period though, the estimates on both AI (t=3.19) and Data Science (t=2.95)
are positive and significant suggesting a greater role for AI investments in driving value in the later
period. Columns (3) and (4) introduce interaction terms with organizational skills for each of these
technologies (ϕDS and ϕAI). In the early period, neither coefficient suggests meaningful correlations.
The estimates from the more recent period, however, suggest that a one standard deviation higher
ϕAI measure raises the value of AI investment by one-third (t=3.18). Notably, the same pattern does
not emerge for data science which may suggest that the bundling with domain expertise matters
more for AI, as a fully-automated decision maker.

4.5 Robustness tests

The market value regressions in the prior section provide evidence that firms’ use of AI and data
science algorithms is benefited by having a decentralized base of algorithmic expertise. This sec-
tion reports further evidence that these correlations are likely due to the hypothesized theoretical
relationships rather than omitted variable bias. Figure 6 summarizes these tests.

These falsification tests focus on the interaction between AI and ϕAI in the last two years of
the sample, where these employment patterns appear to be most important based on the analysis
discussed above. Figure 6a maintains the skill decentralization measure but alters the technology
investment. It shows the coefficient estimates on the interaction term on (AI×ϕAI) from Equation 4
but it also adds interaction terms between AI and ϕDATA and ϕNET (Data and networks, respec-
tively). The theoretical discussion suggests that we should observe the strongest correlations for
algorithmic investment, which is the pattern we observe in Figure 6a. Neither of the coefficients on
the interaction terms created using the other technology measures exhibit meaningful correlations.
Correlations between market value and the interaction terms between ϕAI and AI investment are
likely not simply reflecting another type of heterogeneity that would be picked up by other measures
of technology investment, such as differences in general financial resources, free cash flow, or overall
digital intensity.

Figure 6b performs a similar comparison where it uses AI investment for all interactions but in
addition to ϕAI , it adds similar measures for ϕNETandϕCLOUD. Again, we only observe correlations
with market value when investment in AI technologies is accompanied by a decentralization of
AI-related skills in the workforce.

As a final placebo test, Figure 6c returns to the original construction of ϕAI but it only
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uses occupations lowest in their decision-making importance, rather than those that are highest.
This comparison reveals that correlations with market value are stronger when constructing this
skill measure from occupations where decision-making is critical. In sum, the results in Figure 6
indicate that correlations with market value only appear at the confluence of AI investment and
AI skills in the business and management workforce. We should be cautious before interpreting this
relationship causally, but it at least suggests that investments in algorithms and in the workers who
can apply them to business decisions are disproportionately accumulating in high value firms. We
do not observe similar patterns of resource accumulation for other types of technology or technical
skills in employees who are not instrumental to the firm’s decision-making.

5 Managerial Implications

Adoption of algorithmic decision-making, and particularly predictive AI applications, has been dif-
ficult and uneven. The evidence from this analysis suggests that the human capital of data-driven
firms differs from firms that lag in this domain. This implies that firms face considerable adjustment
costs when adopting these technologies. High adjustment costs imply competitive rents for firms
that have successfully found the right mix of workers.

A corollary is that the costs of using AI and data science technologies are continuously falling.
Conversational interfaces driven by generative AI, for instance, represent a shift in how knowledge
workers interact with information technologies, making them more accessible and user-friendly than
ever before. A fall in the costs of using these tools suggests that employers can accelerate the rate
at which data analysis tasks are pushed to domain experts. The implications of this shift for both
managers and educators can be significant. From a management perspective, no-code and generative
AI tools can democratize technical skill, enabling a more diverse range of employees to contribute to
areas that were once the exclusive domain of technical specialists. This can lead to more innovative
environments that emphasize the productive combination of human creativity and computational
power. Managers, in turn, may need to adapt by focusing less on specific technical skills when hiring
and more on general problem-solving abilities and adaptability.

Another challenge for managers is that technical skill has been shown to have economic
attributes that differentiate it from other types of expertise. For instance, frontier technical skills
derive significant productivity benefits from geographic agglomeration (Saxenian, 1996). Moreover,
rapid technological depreciation changes the economics of professions in which technical human
capital plays an important role, which has implications for topics like gender diversity and skilled
immigration that routinely attract scrutiny from legislators and managers. If a growing number of
occupations requires some form of technical expertise, it may have implications for the structure of
labor markets for these professions.

For educators, the falling costs of technical skill acquisition associated with no-code and
generative AI technologies could suggest a curricular reorientation. Although technical skills will
continue to remain important for specialized workers in IT-producing industries, there may be
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greater emphasis from IT-using industries on understanding how to effectively interact with AI tools,
interpret their outputs, and apply critical thinking to leverage AI-generated content. Educators will
need to focus more on educating students about how to guide and evaluate AI output, rather than
just how to perform tasks that AI can now handle. The results in this study suggest that this
type of education will be needed for all majors, not just technical majors. Institutions that have
not traditionally been as focused on providing technical skills to students, such as business schools,
have observed a surge in interest in demand for courses teaching data, analytics, and AI technologies
(Eisenmann, 2013; Lohr, 2017; Guetta and Griffel, 2021; Becker, 2023). This study suggests that
these changes may be an appropriate response to a labor market that will increasingly demand
algorithmic bilinguals.

6 Conclusions

This paper provides evidence from two different data sources that i) algorithmic expertise is becom-
ing broadly dispersed across domain experts in effective organizations, ii) that this dispersion is due
to complementarities that arise between algorithmic skill and domain expertise, and iii) that the
market assigns higher value to firms that concurrently make these workforce adjustments while in-
vesting in algorithmic tools. In doing so, it documents one early but important facet of the workforce
transformation occurring to support the use of algorithms in the organization.

Nonetheless, there are a number of limitations of this analysis that are worth noting. These
data provide limited visibility into the degree and nature of the expertise required by workers and the
analysis is limited to the relatively narrow question of how a a specific category of skills is bundled
into jobs. The data do not record when domain experts require deep expertise with a technology
or instead, when interactional expertise, which might be required to simply engage with developers
and builders of these tools, would be sufficient. These findings also leave open important questions
about how to restructure decisions around algorithmic technologies and where in the organization
firms should place oversight of algorithmic decisions.

Beyond these limitations, there is significant scope for future work in this area. We are at the
beginning of a large wave of investment in technologies that convert data into decisions, and research
about this phenomenon, and the workforce transformation that will be required to accompany these
changes, is in its infancy. There is much to be learned about how to design organizations so that
humans can effectively work with algorithms. Although this paper considers one facet of workforce
transformation, complements to algorithmic technologies will be wide-ranging. These will likely
include even more sweeping changes to workforce skills, as well as other non-labor investments to
support these capabilities. Firms’ information capabilities will also continue to evolve and algorithms
will become easier to deploy as software and tools progress, which will lower the costs of adoption
and further accelerate the diffusion of these technologies into new jobs.

Indeed, a key limitation of this paper, like most research on technology and work, is that it
takes a static view. At this early adoption stage, there is relatively little evidence that the use of
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these technologies has broad labor market consequences (Acemoglu et al., 2022). Stronger causal
evidence of the impact of these workforce changes on performance requires allowing firms more
time to adapt to this new mode of production. Additionally, new technologies for data collection,
analysis, prediction, and visualization will offer improved capabilities to generate insights. As this
boundary pushes forward, it will continue to change markets for these skills, and continue to raise
new questions about how employers should integrate algorithms into the workflow.
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Table 1: Summary statistics for regression panel variables (2018)

Variable Units Mean Std. Dev. N

Log(Market value) Millions (USD) 9.120 1.83 1,250
Log(Assets) Millions (USD) 8.503 2.18 1,250
Log(PPE) Millions (USD) 5.754 2.57 1,250
Log(Employment) Thousands (Employees) 2.218 1.44 1,250
Log(IT) Skill count 7.065 1.92 1,250
Log(Network IT) Skill count 3.370 2.04 1,250
Log(Database IT) Skill count 5.062 1.86 1,250
Log(Alg IT) Skill count 2.949 2.21 1,250
Log(Data science) Skill count 3.342 1.69 1,250
Log(AI) Skill count 2.032 1.78 1,250
ϕALG Standardized Value 0.061 0.88 1,250

Table notes: This table reports summary statistics for firms in the 2018 cross-section of the regression
panel constructed from the workforce data. The year 2018 was chosen as the midpoint in the panel
window (2015-2021). The data source for the first four rows [Market Value, Assets, PPE, Employment ]
is the Capital IQ database available through Wharton Research Data Services (WRDS). The measures
in the last five rows [IT, Networks, Databases, Algorithms, Data science, AI, ϕALG] are constructed
from the Revelio workforce database.

Table 2: Industry distribution of corporate workforce sample (2018)

NAICS 2 Sector N

11 Agriculture, Forestry, Fishing and Hunting 1
21 Mining, Quarrying, and Oil and Gas Extraction 29
22 Utilities 34
23 Construction 10
31-33 Manufacturing 360
42 Wholesale Trade 34
44-45 Retail Trade 42
48-49 Transportation and Warehousing 34
51 Information 268
52 Finance and Insurance 268
53 Real Estate and Rental and Leasing 26
54 Professional, Scientific, and Technical Services 60
56 Administrative and Support and Waste Management Services 25
61 Educational Services 6
62 Health Care and Social Assistance 24
71 Arts, Entertainment, and Recreation 3
72 Accommodation and Food Services 19
81 Other Services (except Public Administration) 1

Table notes: This table reports the distribution of firms across NAICS 2 digit industries in the 2018
cross-section of the regression panel. It uses the same cross-section of firms as in Table 1.
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Figure 1: The growth of algorithmic skills in job listings

(a) Sample listings with algorithmic and domain expertise
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(b) Likelihood algorithmic expertise appears in a non-IT listing

Figure notes: Figure (a) shows two sample listings for jobs requiring familiarity with both algorithmic tools (highlighted in
yellow) and domain expertise (highlighted in orange), related in these examples to marine biology and finance. These listings
and screenshots were extracted from the website Indeed.com. Figure (b) shows coefficient estimates and standard error bars
on the regression ALGi = βMONTHi + ϵi for the listings in the months covered by the Lightcast data a dummy variable is
included for each month in the data set and where coefficients reflect differences from the Jan 2013 baseline month, i indexes
job listings, and ALG takes the value 1 if a listing contains an algorithmic skill and 0 otherwise. N=60,769,351. Standard error
bars show the 95% confidence interval.
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Figure 2: Algorithmic skills, domain expertise, and job listings
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(a) Bundling of technical skills with domain expertise
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Figure notes: Figure (a) indicates the extent to which different information technologies are bundled with domain expertise for
skills appearing in a single month (January 2016) of the job listing data (N=763,986). Skills in dark blue (dashed line stems) are
in the algorithms category and all other technologies are shown in gray (solid line stems). Longer bars in this figure (reaching
further to the right) indicate a skill that is more likely to be bundled with domain expertise. Figure (b) indicates the fraction
of occurrences where a technology appears in non-IT occupation listings. The sample is restricted to listings in one month
(January 2016) of the sample data with skills in one of the areas indicated (N=263,256). Skills in dark blue (dashed lines) are
those in the algorithms category. A value closer to one means that a skill is more likely to appear in non-IT occupations.
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Figure 4: Skills in job listings requiring algorithmic expertise
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(a) Correlations between algorithmic expertise and key job skills
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(b) Marginal effects of algorithmic and domain expertise on different data tasks

Figure notes: Figure (a) depicts correlations between skills needed on-the-job and algorithmic expertise in the job listings from
January 2016. Each vertical bar is a coefficient estimate from a separate regression of the form SKILLi = αALGALGi +
αDATADATAi + αNETNETi + Log(No. Skills)i + γi + ϕi + ϵi where for each of the five different regressions, SKILL is one
of DOMAIN, COGNITIVE, SOCIAL, CHARACTER, or MANAGEMENT, i indexes the listing, γ and ϕ are occupation and
industry fixed-effects respectively, and Log(No. Skills) is the logged number of skills in the listing. The point estimate shown
is the coefficient on αALG from each regression and the vertical bars indicate 95% confidence intervals. The estimates from
the full form of each of these regressions is shown in Appendix C. Figure (b) reports results from tests of which data tasks
require a combination of both algorithmic and domain expertise using the January 2016 job listings. The logistic regression is
DATATASKi = βDA(DOMi × ALGi) + βDDOMi + βAALGi + Log(No. Skills)i + ϵi where DOMi and ALGi are binary
variables indicating that a listing requires domain or algorithmic expertise and the data tasks can be one of either Data
management, Data modeling, Data visualization, Decision making, Data analytics, or Presentation. The point estimate that is
presented is the marginal effect of the βDA coefficient. Standard error bars show the 95% confidence interval.
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Figure 5: Alg × ϕALG by employment size tercile
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Figure notes: The y-axis indicates the coefficient on the interaction term between algorithm investment and ϕALG from the
main specification used in column (4) of Table 4 where the sample is divided into terciles by employment size. The sample size
in each regression is approximately one-third the sample size used in column 4 of Table 4. On the x-axis, “1” is the smallest
firms in the sample and “3” is the largest firms in the sample. Standard error bars indicate the 95% confidence interval.

Table 5: Separating AI and data science investment in the market value regressions (2015-2021)

DV Log(Market Value)
Years 2015-2017 2018-2021 2015-2017 2018-2021
Model: (1) (2) (3) (4)

Variables
Log(Assets) 0.733∗∗∗ 0.696∗∗∗ 0.733∗∗∗ 0.695∗∗∗

(0.051) (0.044) (0.051) (0.043)
Log(PPE) 0.086∗∗ 0.073∗ 0.085∗ 0.064∗

(0.043) (0.037) (0.043) (0.037)
Log(AI) 0.038 0.104∗∗∗ 0.040 0.098∗∗∗

(0.025) (0.031) (0.025) (0.029)
Log(Data Science) 0.125∗∗∗ 0.105∗∗∗ 0.124∗∗∗ 0.095∗∗

(0.021) (0.037) (0.021) (0.040)
Log(IT) −0.103∗∗∗ −0.103∗∗ −0.103∗∗∗ −0.090∗∗

(0.029) (0.040) (0.029) (0.039)
Log(Employment) 0.000 −0.014 0.001 −0.001

(0.048) (0.047) (0.048) (0.043)
ϕAI 0.015 −0.068∗∗

(0.016) (0.026)
ϕDS −0.018 0.004

(0.022) (0.045)
Log(AI) × ϕAI −0.008 0.031∗∗∗

(0.006) (0.011)
Log(Data Science) × ϕDS 0.004 0.013

(0.006) (0.011)

Fixed-effects
Year FE Yes Yes Yes Yes
Industry FE (NAICS 3) Yes Yes Yes Yes

Fit statistics
R2 0.903 0.853 0.903 0.856
Observations 4,033 2,475 4,033 2,475

Table notes: This table reports regressions of how algorithms and expertise measures relate to market value across the earlier
and later parts of the panel where algorithms are separately broken into AI and data science investment and skills. Observations
are at the firm-year level. The first and third columns use observations from the years 2015 to 2017 and the second and fourth
columns use observations from 2018 to 2021. ϕAI and ϕDS are constructed in the same way as ϕALG in Table 4 except on the
restricted set of AI or data science skills, respectively. Standard errors are clustered on employer. ∗∗∗p<.01, ∗∗p<.05, ∗p<.10.
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Figure 6: Placebo tests using alternative measure constructions for ϕAI and AI

−0.1

0.0

0.1

AI x ORGAI DATA x ORGAI NET x ORGAI

A
lg

×
φA

LG

(a) Comparisons with investment in other technologies

−0.10

−0.05

0.00

0.05

0.10

AI x ORGAI AI x ORGCLOUD AI x ORGNET

A
lg

×
φA

LG

(b) Comparisons with organizational measures of other technical skills
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(c) Comparisons with measures of technology and other technical skills

Figure notes: This figure illustrates placebo tests for the market value regression for AI investment in the last
two years of the sample. In addition to the main interaction measure AI × ϕAI , it also includes interaction terms
between ϕAI and investment in databases (DATA) and networks (NET) (N=1,312). In the top facet, the marker
on the left is AI, the middle is databases, and the right is networks. The middle facet takes a similar approach
but uses AI investment for all measures and adds interaction terms for ϕCLOUD and ϕNET in addition to ϕAI

(N=2,479). The third facet separates the O*NET occupations used to construct ϕ into two separate regressions:
(i) those where decision-making is important (left) and (ii) where it is unimportant (right). N=1,312 for both
regressions. The standard error bars in all three facets indicate 95% confidence intervals.
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A Description of corporate workforce data

This section discusses the Revelio corporate workforce data and presents comparisons with data sets with
known sampling properties. This comparison is intended to discuss any limitations that sampling restrictions
might impose on the main estimates. To evaluate coverage in these data, comparisons of the workforce data
are presented with three different data sources: i) the distribution of US workers across occupations reported
by the Bureau of Labor Statistics (BLS), ii) the distribution of employment by NAICS industry, and iii) how
employment is distributed across US states.

A.1 Data generating process and sampling frame

Revelio is a workforce intelligence company that federates data across a range of Internet sources including
federal databases, professional networking sites, and job posting aggregators. This analysis relies on their
workforce, position, and skill databases which contain data on the movements of an extremely large sample
of US-based employees across firms, the job titles they hold, and the skills they acquire. Data on employment
spells, at scale, are not otherwise collected by government agencies. They are only available through resume
banks so these types of data are particularly useful for studying quantities of workers in firms with different
skills and the flow of workers of different types between organizations.

On the other hand, there are some potential issues when using data sources of this type. Workers par-
ticipate on professional networking sites unevenly. Moreover, workers can be selective about what information
they include on these sites and what information they omit. These choices generate measurement error when
these data sources are being used to understand a firm’s skills or occupations. Prior work discusses some of
these considerations (Horton and Tambe, 2015) but the following sections calibrate specific strengths and
deficiencies in terms of coverage. Measurement error in this data set is discussed later in this appendix.

A.2 BLS-SOC share comparisons

The distribution of Revelio workers across occupations is shown in Figure 7a. Figure 7b presents differences
in shares of the major occupational groups as reported by the BLS and represented in the Revelio data,
where the assignment of workers to SOC areas in the Revelio data is provided by Revelio. The blue line
indicates no (zero) difference in shares such that bars to the right (left) are those occupations where the
occupation accounts for a higher (lower) proportion of workers in the BLS data than the Revelio data.

From this comparison, we can see that “white-collar”, knowledge-intensive occupations like manage-
ment and Information Technology work tend to be over represented in the Revelio data set whereas front-line
occupations in sectors like manufacturing, production, and transportation are underrepresented. This is not
a surprise given that these data are gathered from professional networking sites on which white-collar workers
tend to be over represented. The length of each bar is the difference in shares across these data sources. The
largest imbalance in occupations in Management. The difference in the share of total workers that managers
account for in the Revelio data set (15%) and the BLS (7%) is about 8% percentage points.

A.3 NAICS Industry comparisons

Employment comparisons at the North American Industry Classification System (NAICS) industry level are
reported in Figures 7c and 7d. These industry level comparisons are conducted at the 2-digit NAICS level
where the underlying allocation of workers across industries is taken from the Occupational Employment Sur-
vey data. Industry classifications in the Revelio data are generated by assigning employers to industries and
like the occupational assignments, are directly reported by Revelio for each employee. The share differences
we can observe in this comparison are consistent with the earlier observation that white-collar professions
are over-represented in the Revelio data set. Technology, finance, professional services, and manufacturing
industries account for larger shares of employees in the Revelio data than they do in the BLS data. By
comparison, healthcare and construction account for smaller shares.
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A.4 Geographic (state) comparison

A final comparison, shown in the bottom panel (Figures 7e and 7f) is state-level comparisons. This comparison
evaluates the reported geographic location of workers in the Revelio data set with the distribution of workers
across US states. Unsurprisingly, we can see that states with significant industry representation for finance
and technology (such as New York) account for a relatively larger share of workers in the Revelio data. The
largest imbalance is in North Dakota, where industries like oil extraction and agriculture play a larger role
in the state economy.

A.5 Discussion

In sum, when we consider the spread of algorithmic technologies into occupations, industries, and geographies,
workers in the Revelio data set are likely to be over-representative of those information-intensive industries,
occupations, and sectors that are likely to be most impacted by these technological changes.

Having greater quantities of workers in this database from some sectors and occupations will affect
the precision of the measurement, but this may fall into under normal, random measurement error if those
workers who do report their skills are not very different from the ones who do. The number of workers in
the database from each Fortune 500 firm is large though, so this type of measurement error should not be
very large. Even in underrepresented occupations and industries, the database should produce a high-quality
signal of the skill content of a profession.

A less innocuous issue is that the reporting of skills themselves may be inconsistent. Workers in some
occupations and industries may be more inclined to report these skills on their profiles. They may consistently
report skills that are likely to lead to future employment opportunities, but inconsistently report skills that
the market does not deem to be particularly valuable. This can impact the interpretation of the magnitudes
of the coefficients in the main regressions (e.g. market return to a marginal database engineer), although it
should not impact the sign and direction of these estimates.
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Figure 7: Revelio data distributions
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Arkansas
California
Colorado

Connecticut
Delaware

District of Columbia
Florida

Georgia
Hawaii
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington

−0.08 −0.04 0.00 0.04
Difference in occupational share

S
ta
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s

(f) States

Notes: These three figures illustrate the difference in compositional shares between the Revelio and BLS data sets. The top
row is comparison of occupations. The second row is comparison across NAICS industries. The third row is comparisons across
states. The length of each bar for plots in the second column is computed as the difference in the share that the worker category
accounts for in the Revelio data and in the administrative data. For instance, Management workers comprise 15% of the Revelio
data set and 7% of the BLS data set so the length of the bar indicates an 8% difference between the two.

36



B Categorizing skills into technological areas

A key measurement task for this analysis is to generate a taxonomy of skills, either as embedded in job
listings or reported by employees on their profiles, that enables measurement of technological expertise. This
requires construction of a mapping from granular skills to the broader technological areas to which they
are related. For instance, skills such as “Oracle DB” and “MySQL” both indicate expertise with relational
database technologies. To construct this taxonomy in the workforce data, I leverage an existing structure from
Revelio that categorizes skills into technological groups. This data provider uses data clustering techniques to
categorize skills into a taxonomy. This approach combines skills into common groups if they inhabit a similar
area of the skill landscape after clustering. The ensuing technological clusters are then assigned labels by the
provider. The skills that appear in each of the key technology categories, as constructed by the data provider,
are shown below. It is important to note that each of the skills shown below are one of 1,500 keyword skill
categories that contain sub-skills within them. For instance, ’machine learning’ may include skills within it
like ’classification’, ’clustering’, or ’deep learning’. The skill name itself is not an indicator of a hierarchy.
For instance, the ’Tableau’ category also contains ’Microsoft BI’ and ’Qlik’, which are competitor no-code
tools. Therefore, each of the technological areas shown below is a mapping of categories which themselves
are a grouping of keywords.

Skills in the job listings data are organized under a separate taxonomy. However, to maintain con-
sistency across the analysis, I harmonize the skills in the job listings data with the technological categories
included in the workforce intelligence data. For instance, an ’Algorithms’ category was created from the job
listings data by identifying skills in the job listings that had a match with one of the skills in the equivalent
category in the workforce data. Matches were made manually, to account for minor differences in case or
how skill names were standardized by the different providers.

B.1 Technology categories created from skill categories in the workforce data

Artificial Intelligence. machine learning, natural language processing, image processing/computer vision, artifi-
cial intelligence, tensorflow, pytorch, scikit-learn

Data Science. data visualization, data mining, statistical data analysis, big data, data modeling, data analytics/-
data science/big data analytics, marketing analytics, quantitative analytics, analytics, business analytics, predictive
analytics/predictive modeling, pandas, tableau, nosql/redis, numpy, R, scala, spark, julia, pyspark

Big Data Technologies. distributed systems/scalability, mongodb, hive/apache pig, docker/devops, middleware,
data center, centos/debian, hadoop/apache spark/mapreduce, ubuntu, server architecture, red hat linux, high perfor-
mance computing, vms,socket programming, olap, soa, websphere mq, multithreading, service-oriented architecture
(soa), ibm tivoli, hive/apache pig

Relational Databases. master data management, spatial databases/web mapping, data warehousing/etl, database
administration, database, database security, metadata/metadata management, oracle sql developer/oracle database,
data entry,data quality, data acquisition, data management, data processing, data integration/data warehouse ar-
chitecture, data migration, database design,data collection, db2, sql, pl/sql, mssql/ms sql/ms sql server, sql server
management studio, oracle sql, sqlite, mysql/php,performance tuning/sql tuning, oracle pl/sql development,sql server,
microsoft sql server, extract/transform/load (etl),sybase, t-sql/ssis/ssrs, teradata, sap hana,jsp/jdbc, edi, sqr, rdbms,
oracle rac, ibm db2

Cloud & Mobile Technologies. microsoft azure, windows azure, amazon services/aws, cloud-computing, cloud
computing, amazon web services (aws), cloud applications, vmware, openstack, vmware esx/vmware infrastructure/v-
sphere;; android, objective-c/ios development, mobile device management, wireless technologies, wireless communi-
cations systems, mobile application development, swift/xcode, android development/android sdk

Network Administration. lan-wan, lan, ssl, ssl certificates, wan, network operations, ip networking, computer
networking, voice over ip (voip)/internet protocol (ip), network troubleshooting,network architecture, network secu-
rity,network development, computer network operations, wireless networking, network administration, san/storage

37



area networks/netapp, internet protocol suite (tcp/ip), tcp/ip, data mapping tcp/ip protocols, routing protocol-
s/switching,switches/routers, routing/qos, wifi, dns/dhcp, ethernet, wireless, mpls, netcool, ccna/ccnp, putty, wimax,
snmp

General Information Technology. software testing, software engineering/software design, software training,
software documentation, software installation/laptops, software development life cycle, embedded systems/embed-
ded software, software,software architecture, software licensing, software quality assurance, software implementa-
tion,object oriented software, software deployment, open source software, software asset management, software project
management, software integration, software development life cycle (sdlc), software development, release management,
unix, ftp, object oriented design, oop, c++/c, c++ language, microsoft visual studio c++, visual c++,c/c++, windows
server, windows server 2008/windows server 2003, .net/asp.net, unit testing, it governance, sdlc, bash, shell, linux,
object-oriented programming, it audit/cisa, assembly language, servers, user acceptance testing, it, support/server,
object-oriented programming (oop), continuous integration, it infrastructure management, operating systems,visual
basic for applications (vba), information technology, shell scripting/unix shell scripting, linux system administration,
code review, server administration, agile testing,regular expressions, system testing/system integration testing, pow-
ershell, ldap, orm, vb.net,linux kernel, vdi, ibm rational tools, nas/enterprise storage, smtp sap, ivr, ibm iseries, asp,
weblogic, dos, ibm aix,ado.net/asp.net ajax, asp.net mvc/linq/entity framework, vsam, raid, it operations

B.2 Technology categories created from skills in the job listings data

ALG. Algorithms.
Machine Learning, Decision Trees, Random Forests, Recommender Systems, Mahout, Support Vector Machines, Arti-
ficial Intelligence, Predictive Modeling, Predictive Analytics, Predictive Models, Data Mining, Deep Learning, Neural
Networks, K-Means, Cluster Analysis, Natural Language Processing

DATA. Relational databases & Big data.
SQL, MySQL, Structured Query Language, database management, database administration, data cleaning, data ex-
traction, database querying, Big Data, Apache Hadoop, NoSQL, MongoDB, Apache Hive, Splunk, MapReduce, PIG,
Cassandra, SOLR, Sqoop

NET. Web & Networks.
Objective C, Swift, HTML5, Javascript, HTML, iOS, CSS, Cisco, Network Engineering, Network Administration,
Computer Networking, Network Support, Network Concepts and Terminology, Data Communications, Network In-
stallation, Wireless Local Area Network (LAN), Network Management System, Network Infrastructure
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C Full correlation table between technologies and job skills

In this section, we present a fuller discussion for some of table results discussed in an abbreviated manner
in the main text. Table B.1 presents results corresponding to the coefficient estimates depicted in Figure 4.
The table reports results from the full form of the regression which is:

ATTRi = βAALGi + βDDATi + βNNETi + γi + ϵi

Figure 4 in the main text shows that algorithmic skill is correlated with domain expertise and cognitive skill.
There are negative correlations with Character and Management, after conditioning on job title and industry.
The regression also includes measures of skills related to databases (DATA) and network administration
(NET). Database management is negatively correlated with all dependent variables which is probably a
by-product of the skill-intensive nature of that position. Network administration exhibits relatively weak
correlations with all of these job attributes.

Table B.1: Logistic regression of algorithmic tools on domain expertise and other job attributes

Dependent variable:
Domain Social Character Cognitive Management

(1) (2) (3) (4) (5)

ALG 1.548∗∗∗ 0.142∗∗ −0.481∗∗∗ 0.129∗∗ −1.260∗∗∗

(0.066) (0.064) (0.088) (0.063) (0.137)
DATA −0.833∗∗∗ −0.194∗∗∗ −0.173∗∗ −0.209∗∗∗ −0.646∗∗∗

(0.070) (0.055) (0.072) (0.056) (0.084)
NET −0.423∗∗∗ 0.033 0.079 −0.036 −0.009

(0.055) (0.041) (0.057) (0.042) (0.066)
Log(No. of Skills) 1.680∗∗∗ 1.540∗∗∗ 1.885∗∗∗ 1.800∗∗∗ 2.247∗∗∗

(0.047) (0.035) (0.053) (0.038) (0.064)
Constant −6.461∗∗∗ −4.779∗∗∗ −7.233∗∗∗ −5.890∗∗∗ −7.965∗∗∗

(0.162) (0.111) (0.174) (0.120) (0.203)

Job Title FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes

Observations 24,888 24,888 24,888 24,888 24,888
Log Likelihood -8,951.652 -13,366.200 -7,837.757 -12,908.540 -6,061.045
Akaike Inf. Crit. 18,315.300 27,144.390 16,087.510 26,229.070 12,534.090

Table notes: This table reports results from the logit regression ATTRi = βAALGi + βDDATi + βNNETi + γi + ϵi. It
estimates conditional correlations between algorithmic expertise and other job attributes. Log(No.ofskills) is the log of
the total number of skills in the job ad. The dependent variable indicates whether or not a job listing requires knowledge of
an application domain, social skills, character, cognitive skills, and people management skills, respectively. All regressions
include job title and industry fixed-effects (NAICS 4). Standard errors are shown in parentheses. ∗∗∗p<.01, ∗∗p<.05,
∗p<.10.
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