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Abstract

Using workforce data from US firms, this study tests the hypothesis that generating value from
algorithms requires employing domain experts who can effectively interact with data and algo-
rithms. This decentralization of technical expertise stands in contrast to earlier generations of
business technologies for which the complementary skills were primarily embodied in IT spe-
cialists and it is due to the task complementarities that arise when integrating decision-making
algorithms into production. Using two different workforce data sets, I show that 1) employ-
ers have been shifting hiring towards requiring greater expertise with algorithms from domain
experts, 2) technical human capital in frontier firms has become more dispersed across occupa-
tions, and 3) the market assigns higher value to firms’ algorithmic investments when they have
also made these workforce changes, indicating the presence of valuable intangible assets that
can yield future productivity benefits. Finally, I show that the recent advance of no-code and
natural language tools that make it easier to perform technical work accelerates these changes.
Implications for training, education, and algorithmic decision-making are discussed.

Keywords: human capital, algorithms, IT intangibles, future of work, IT complements, digital literacy,
general purpose technology, GPT

1 Introduction

The impact of algorithmic decision-making is having on organizations is a topic of growing interest
(Rock, 2019; Wu et al., 2019; Agrawal et al., 2018; Zolas et al., 2021). Much research in this area
focuses on the labor reallocation effects of AI and automation technologies (Acemoğlu and Restrepo,
2016; Autor and Salomons, 2018; Brynjolfsson et al., 2018; Eloundou et al., 2023), with some of
this work demonstrating that these technologies are not simply labor displacing (Agrawal et al.,
2019; Gregory et al., 2022). Rather, new technologies are also likely to generate new jobs and new
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types of jobs (Bessen, 2019; Autor et al., 2022), and scholars have explored how humans can be
most effective when working alongside algorithms (Faraj et al., 2018; Cowgill, 2018; Beane, 2019;
Agrawal et al., 2019; Lebovitz et al., 2022; Babina et al., 2022).

This paper develops new theory and evidence arguing that a complement to the effective or-
ganizational use of algorithms is the bundling of “algorithmic literacy” into jobs requiring significant
levels of domain expertise. It focuses on two distinct types of skills. Algorithmic literacy refers to
those skills related to the use of algorithmic tools and technologies, such as data science as well
as machine learning and other AI tools, which enable firms to convert data into strategic decisions
in the pursuit of business goals.1 Domain expertise refers to expertise needed to work in a special-
ized field such as nursing, sales, marketing, or accounting. Prior work suggests that both domain
expertise and “interactional” technical expertise are important when using algorithmic technologies
(Collins, 2004), particularly in sensitive contexts like law or medicine, where the payoff function
for a decision is difficult to define or where the tolerance for machine-based prediction error is low
(Kleinberg et al., 2018; Choudhury et al., 2020).

This migration of technical expertise into jobs requiring domain expertise contrasts with an
organizational design in which technical expertise is localized in specialized technology (IT) workers,
and it relates to the observation that much of the occupational adaptation to technological change
is occurring at the sub-occupational level (Spitz-Oener, 2006). Colloquially, it is also consistent
with the argument that as a general purpose technology, AI will increasingly become a central
component of all occupations. To explain these changes, this paper develops new theory that builds
on the literature on the economics of job design and considers how algorithms differ from other
business information technologies (Smith, 1776; Becker and Murphy, 1992; Dessein and Santos,
2006; Teodoridis, 2017; Lindbeck and Snower, 2000; Postrel, 2002). It generates hypotheses related
to i) how firms adapt jobs when using algorithms for decision-making and ii) how these adjustments
impact organizational performance.

These hypotheses are tested using databases on corporate hiring and employment. The first
database, which captures a “near-universe” of job listings issued by US firms, has been used in prior
work on the changing skill requirements of jobs (Deming and Kahn, 2018; Acemoglu et al., 2022)
as well as to track the spread of new technologies (Goldfarb et al., 2023). The second data source
is a fourteen-year panel of how workers with different technology skills move across occupations in
different firms over time.2 These databases are combined with administrative data on the knowledge
content of occupations from the Bureau of Labor Statistics O*NET database and with employers’
financial data from the Compustat-Capital IQ database.

The analysis produces three findings. First, using the job listings data, I demonstrate that
algorithmic skills gradually spread across listings from 2010 to 2016 in an occupational pattern that
more closely resembles office software (e.g. word processing tools) than more centralized technology

1I use the term “literacy”. Whether jobs require literacy or expertise with the technology is an important question
but it is beyond the scope of the data sources used in this paper so it is left to future work.

2We provide details on this data source in a later section as well as an Appendix that conducts comparisons with
data collected by administrative agencies.
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skills like database administration. These technological markers became notably more dispersed
across occupations than skills related to other business technologies and by 2016, only one-third of
these technologies were embedded in IT listings. Indicators of algorithmic literacy were particularly
likely to migrate into occupations requiring domain expertise.

These findings illustrate changes in employer preferences, but not whether the market can
meet these preferences, so I next show that these trends in the job listings data are consistent with
changes in the corporate employment data over an overlapping but longer fourteen year sample
period (2008-2022). I find that in public firms, markers of algorithmic literacy increasingly spread
to business, management, and financial occupations which is consistent with the job listing data and
is in contrast to other business technologies which have not experienced similar changes during the
same time period. For example, the fraction of workers in business occupations with skills related
to mobile technologies remained flat in this period and this fraction fell for skills related to cloud
and network based technologies.

Third, I show that these workforce adjustments are generating productive, intangible assets
for public firms. The spread of algorithmic literacy into business occupations is most clear for
high market value firms. Financial markets assign higher value to public firms with investments
in algorithms when they make complementary workforce adjustments which suggests that firms
derive the largest benefits from investing in algorithmic tools when their business professionals are
engaged in integrating these technologies into production. Similar correlations are not present for
investment in other information technologies or with other types of employee expertise, suggesting
that the returns to bundling skills in this way are specific to algorithmic tools. Fourth, to move
beyond primarily descriptive evidence, I leverage discrete technological advancements in software
and tools that lower the cost of acquiring algorithmic skills to show that these changes increase the
propensity of employers to make these workforce changes.

This study contributes to two academic literatures. First, with its focus on employers, it
contributes to a literature identifying organizational complements to information technology (Bres-
nahan et al., 2002; Black and Lynch, 2001; Caroli and Van Reenen, 2001; Bartel et al., 2007; Bloom
et al., 2012). These analyses have principally been rooted in a perspective based in IT as a technol-
ogy that can automate “routine” tasks, but the application of algorithmic technologies to contexts
where decision rules are not easily mapped to software has reopened the discussion on how IT might
affect firms’ labor force needs (Brynjolfsson et al., 2018). In doing so, this paper contributes to an
emerging literature that examines management practices that complement investments in predictive
algorithms (Brynjolfsson et al., 2021; Zolas et al., 2021; Dixon et al., 2021; Xue et al., 2022).

Second, it contributes to a literature on how the widespread use of algorithms might shape
the future of work, which is an increasingly important area of research as new technologies subsume
many of the tasks done by humans while simultaneously generating new areas of demand for hu-
man labor (Agrawal et al., 2019). Most prior work focuses on the IT workforce (Ang et al., 2002;
Levina and Xin, 2007; Mithas and Krishnan, 2008; Wiesche et al., 2019; Tambe et al., 2020), but
there has been limited work on the implications of technical skills for broader workforce outcomes
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(Atasoy et al. (2016); Deming and Noray (2020) are exceptions). The absence of work in this area
is important given the growing demand from students and workers from all disciplines for “coding”
and other technical skills and the growing emphasis on how humans and AI will interact in the
workforce. Contemporaneously, the costs of doing technical work continue to fall, as new advances
from tech companies (e.g. no-code tools for data manipulation or natural language tools like Code
Interpreter/ChatGPT from OpenAI) make it cheaper and faster to do data science with little or
no coding requirement. These findings, therefore, contribute to our understanding of how the con-
nection between humans and algorithms will shape the demand for skills as employers continue to
embrace algorithmic decision-making.

2 Theory and Hypothesis Development

2.1 Bundling algorithmic technologies and domain expertise

For decades, the diffusion of computing technologies has driven a relative increase in the demand for
college-educated workers (Berman et al., 1994; Bresnahan et al., 2002; Bartel et al., 2007). Comput-
ers complement educated workers because by automating routine tasks, they raise the productivity
of front-line workers who can make decisions about non-routine problems (Autor et al., 2003). For
example, when decision authority is decentralized, hotel desk agents can rapidly adapt to chang-
ing customer preferences and factory floor workers can fix manufacturing problems as they arise.
This literature has principally focused on changes to education levels or to the mix of occupations
that firms employ, but employers can also adjust the mix of skills within occupations in response
to technological change (Spitz-Oener, 2006). Lindbeck and Snower (2000) argue that task comple-
mentarities in knowledge-rich jobs have shifted work away from specialization towards “holistic”
work in which workers handle a diverse array of tasks. Multi-task work raises productivity in the
presence of informational complementarities among tasks because productivity in one task can be
interdependent with levels of activity in other tasks. In such contexts, bundling tasks to avoid the
need for continuous coordination among workers can yield productivity benefits (Postrel, 2002). An
advantage of hiring educated workers is that they can easily adapt to a multi-task job design.3

AI and data science algorithms challenge our understanding of technology and job design be-
cause these technologies can make decisions even when the relationship between inputs and outputs
may not be viewed as routine (Brynjolfsson et al., 2018; Agrawal et al., 2018). When decision rules
cannot be clearly articulated, there may be additional costs to separating technical and domain
expertise, when building model as well as when interpreting their output. For instance, in complex
domains, like medicine or engineering, making sense of data can require medical expertise needed
to create meaningful healthcare indicators from medical test results. This is not a new challenge.

3Relative to changes in occupational demand, this intra-occupational change has been empirically less widely
documented because administrative data agencies do not capture it as well. To fill this gap, scholars often turn
towards alternative data sources. An example is (Spitz-Oener, 2006), who uses German data to show that within-
occupational change was happening particularly quickly in occupations that were being computerized. In that sample,
within-occupational change accounted for 36% of educational upgrading.
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Organizations that rely on data-mining processes, have routinely been faced with the challenge of
how to inject domain expertise into the data modeling process. For example, one standardized pro-
cess widely used to balance data modeling decisions with business objectives is “CRISP-DM” (Cross
Industry Standard Process for Data Mining) (Wirth and Hipp, 2000; Chapman et al., 2000).4 The
CRISP-DM model separates the data mining process into six discrete steps: 1) Business Understand-
ing, 2) Data Understanding, 3) Data Preparation, 4) Modeling, 5) Evaluation, and 6) Deployment.
Within this model, domain expertise is viewed as separate from technical expertise and concep-
tualized as drawn from other experts within the organization or from outside clients. However,
coordination between workers with different expertise is costly, and studies of CRISP-DM identify
coordination costs across stakeholders as a weakness of this paradigm (Saltz, 2021).

These challenges are not limited to CRISP-DM. A recent literature extends these challenges
to different stages of the data science process (Mao et al., 2019; Choudhury et al., 2020; Park et al.,
2021). The inherently iterative nature of data exploration, experimentation, and learning required
when doing data science often favors generalists, who have a diversity of relevant skills, rather than
specialists (Colson, 2019). A prominent example of this tension is with “data scientists” themselves,
who by definition of the job title, combine technical and statistical skills with domain expertise
(Davenport and Patil, 2012; Provost and Fawcett, 2013). The importance of domain expertise for
data science has been discussed online5, in industry panels6, and increasingly, in the business press
(Oostendorp, 2019). Even beyond data scientists, “unicorns”, who couple domain expertise with
technical skills, are becoming important to many algorithmic decision-making contexts (Jha and
Topol, 2016).7 For instance, users of machine learning tools in high-stakes contexts must evaluate
the tradeoffs when choosing which data to include in a model, how to construct model features, or
how to assign value to the costs of different prediction errors (Kleinberg et al., 2018; Cowgill, 2018;
Cowgill et al., 2020). Research on pharmaceutical industries indicates the importance of embedding
the relevant human capital in downstream occupations to achieve successful innovation outcomes
(Wu et al., 2019), and in healthcare, Lebovitz et al. (2022) describes the challenges arising with
interpreting the accuracy of machine learning tools and Jha and Topol (2016) argues the importance
of medical experts acquiring the skills required to understand predictive model output.

4Poll results from 2014 suggest that it is the most common methodology used for data mining and data science
projects, with about half of the respondents reporting using CRISP-DM and the other half divided over other
methods. See https://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-
projects.html, last visited on Jan 4 2023.

5For example, see Is domain knowledge necessary for a data scientist? Accessed on March 11, 2019.
6A video of one such industry panel is captured here: https://youtu.be/qKcUsIqoSHE.
7The educational community has also started to respond to these changes. For instance, the notion that data-

driven employers increasingly demand “bilingual” workers (i.e. individuals who have both technical skills and domain
expertise) was underscored by an announcement from MIT on their investment in a new College for Artificial Intelli-
gence. The goal of the college, said L. Rafael Reif, the president of M.I.T., is to “educate the bilinguals of the future.”
He defines bilinguals as people in fields like biology, chemistry, politics, history and linguistics who are also skilled
in the techniques of modern computing that can be applied to them. Additionally, it is expected that the “bilingual”
graduates who emerge from this new College — combining competence in computing and in other fields — will be of
enormous value to employers. New York Times, Oct 15, 2018. MIT Plans College for Artificial Intelligence, Backed
by $1 Billion.
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H1: Algorithmic skills are more likely than other business information technologies to
be bundled with domain expertise.

This leaves open the question of which occupations receive this bundle of skills.

2.2 Which workers receive the bundle?

The literature on job design argues that tasks are organized according to three factors: special-
ization, coordination, and adaptation. How AI affects job roles may depend on these three factors.
Specialization allows for Smithian productivity gains as in the medical field where AI algorithms an-
alyze medical images, freeing radiologists to concentrate on complex cases (Smith, 1776). In terms of
coordination, AI enhances the synchronization of interdependent tasks, exemplified by supply chain
management where predictive analytics efficiently align inventory, supply, and delivery schedules
(Becker and Murphy, 1992). A third factor is adaptation, with AI excelling in tailoring tasks to
local information (Dessein and Santos, 2006). Marketing professionals, for instance, might leverage
AI to create personalized advertising based on consumer behavior data. AI’s adaptive capabilities
may be particularly valuable for tasks where the application of local knowledge is critical.8

These forces provide context in which to theorize about the control of information and task
bundles in work environments. An instructive historical parallel is typing pools, where workers were
once organized into pools to produce typing services. The typing task eventually became part of
the knowledge worker’s job because local adaptation is important when creating documents.9 In the
same way, if domain expertise helps with local adaptation and the costs of acquiring technical exper-
tise falls, organizations may prefer that domain experts – like those in finance and human resources
– receive these skills. On the other hand, AI introduces the potential for decentralized control. AI
can substitute for some forms of domain expertise, reducing the need for domain expertise in areas
such as foreign language proficiency, due to AI-powered translation tools. Here, the technology itself
can provided the services once provided by domain experts. Therefore, who gets the bundle is an
empirical question.

H2: Algorithmic skills are more likely to appear in occupations where local adaptation is
important.

These considerations are not static. The job considerations discussed above are closely related
to the costs of acquiring technical knowledge, which are constantly changing. As the costs of some
types of technical expertise falls, employers will bundle it with knowledge workers.

H3: Algorithmic skills are more likely to diffuse into domain expert jobs as the cost of
acquiring the skills needed to use algorithmic tools falls.

8There are parallels for these arguments in the construction of teams. Using academic publication data, Teodoridis
(2017) shows that a decrease in the cost of acquiring new technical knowledge changes the optimal mix of expertise
when constructing diverse teams.

9I am grateful to Anna Salomons for suggesting this instructive comparison.
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2.3 Algorithmic bilinguals and firm value

Similarly, for investments in tools like AI and data science, firms may not recognize value from
these technologies unless they have the people in place who can apply these technologies to valuable
decision contexts. Prior work has shown that workforce adjustments like these are needed to realize
financial returns to investments in different technologies (Black and Lynch, 2001; Bresnahan et al.,
2002; Caroli and Van Reenen, 2001; Bresnahan et al., 2002; Bartel et al., 2007; Bloom et al., 2012).
For technologies that can perform routine tasks, allocating decision authority to front-line decision
makers yields higher productivity levels (Bresnahan et al., 2002), making IT investments valuable in
turbulent environments where the value of decisions depends on rapidly changing external conditions
(Mendelson and Pillai, 1998; Pavlou and El Sawy, 2006; Tambe et al., 2012; Black and Lynch, 2001;
Bresnahan et al., 2002).

Similarly, firms invest in algorithms may also need to design jobs to colocate algorithmic
skills with knowledge workers in order to realize greater value. These higher values reflect valuable
intangible assets that the market expects to eventually yield a stream of productive benefits. The
literature above suggests that the application of data science and AI in a production context, by
introducing new challenges related to coordinating domain expertise with effective data modeling,
analysis, and application, amplify the productivity benefits that arise when hiring employees that
can synthesize both types of knowledge.

H4: Financial markets assign higher value to investments in algorithmic technologies
when the complementary skills are dispersed among business-facing occupations.

The next section describes the data used to test these hypotheses.

3 Data sources and key measure construction

3.1 Key data sources

3.1.1 Job listings database

When employers have job openings, they post details online on their corporate web sites or on
job boards. These listings identify the employer and the job title, the geographic location of the
position, the skills and education sought from candidates, offered wages, and other fields relevant
to the search process. I use this data to measure when specific skills begin to appear in online job
ads and how skills co-occured in these listings with other skills.

Job listings data have been used in several papers on changing workforce skill requirements
(Todd et al., 1995; Slaughter and Ang, 1996; Gallivan et al., 2002; Lee and Han, 2008). This study
uses data from Lightcast, a labor market analytics firm that 1) uses software to crawl a “near-
universe” of online job postings and 2) uses natural language processing to parse skills and other job
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information.10 This data provider uses proprietary software to collect and standardize data from
over 17,000 job boards and corporate web sites, and these data are processed to ensure that a job
listing is not counted multiple times if an employer posts it several places on the web. The processed
data include posting date, job location (metropolitan area), employer name, job title, educational
requirements, certifications required for the position, and skill expectations for each job. A growing
number of studies use this data source to study labor markets (Hershbein and Kahn, 2018; Deming
and Kahn, 2018; Modestino et al., 2019), including how AI related skills spread across jobs and
industries (Acemoglu et al., 2022; Goldfarb et al., 2023).

Lightcast associates each listing in the database with a BLS O*NET code and the employer
in a listing is tagged with a North American Industry Classification Systems (NAICS) industry.
Job openings list skills, such as Python, Random Forest, Chemistry, Supply Chain, Accounting, Data
Science, Teamwork, or Communication which are standardized using a skill dictionary maintained
by Lightcast. These skill data should not be interpreted as “requirements”. Employers can omit
skills from listings, some skills may be assumed rather than listed, and successful candidates may
not need all of the skills in a listing. Nonetheless, employers are thoughtful about the skills they put
in listings because including or omitting a skill can attract or repel the wrong type of applicant.

The data collection process raises questions about its coverage. Prior academic work has pro-
vided thorough information on the sampling properties of the data and compared it with administra-
tive data sets, so I do not duplicate those comparisons here.11 Key findings from these comparisons
are that these job listing data over-represent in computer and mathematical occupations, as well
as management, health care, business, and financial occupations, but they represent IT workers
particularly well. They are a less robust indicator for job openings in blue-collar occupations.

3.1.2 Corporate employment database

The corporate employment data were collected through a partnership with the workforce intelligence
company Revelio Labs.12 Their databases are constructed from a variety of data sources including
online career profiles and federal databases.13 These data are similar in their informational content
to that posted on online professional networks such as LinkedIn and they cover a large fraction of
white-collar work in the US. The data cover both public and private US firms but the sample used in
this study is limited to public firms so that they can be connected with financial market data. This
data source has been less widely used in the literature than the job listings data, so in Appendix A,
I report detailed comparisons of these data with administratively sampled workforce data from the
Bureau of Labor Statistics. We can see from these comparisons that like the Lightcast data, these

10Until June of 2022, Lightcast was known as “Burning Glass Technologies” and is referred to as such in much of
the prior work that has used this data set. In this paper, for consistency, we use the name Lightcast throughout,
including when referencing the use of these data in prior papers.

11See, for example, Appendix A of Deming and Kahn (2018) who make comparisons of these Lightcast data with
administratively collected data sources.

12See https://www.reveliolabs.com/
13Scholars have argued that the lack of firm-level data on workforce skills is a constraint for understanding how

firms are adjusting to technological change (Frank et al., 2019; Raj and Seamans, 2018).
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data are oversampled in management, business, and technology occupations and undersampled in
areas such as agriculture and manufacturing which is consistent with the greater use of professional
networking sites in knowledge-intensive occupations.14

These workforce data are used to generate measures of annual firm-occupation-skill employ-
ment activity from 2008 through 2021.15 This panel records how skills, like “machine learning”,
related to different technologies diffuse across occupations and employers. Moreover, the data con-
tain CUSIP identifier codes for employers, and so employers can be joined with external firm-level
financial databases such as the Compustat-Capital IQ data (described below).

3.1.3 Supplementary data sources

To create job expertise measures, the O*NET codes in the job listing data are connected with
the Occupational Information Network (O*NET) content model published by the Bureau of Labor
Statistics.16 The O*NET database has been very widely used in academic research,17 is government
administered, collected by surveying occupational experts, and provides information on employment,
wages, and the work content of US jobs. The O*NET taxonomy reports work requirements including
the knowledge required for different occupations.18 Finally, some analyses also use firms’ financial
data from Compustat-Capital IQ, which was collected through the WRDS data service.

3.2 Key measures

3.2.1 Algorithmic and technological expertise

One challenge when converting skills data into economic measures is the development of classifica-
tions that can provide structure to groups of skills.19 Empirical papers that study large quantities
of archival, digitally collected skill data have used manually constructed mappings of skills to con-
ceptual measures (Deming and Kahn, 2018), including when classifying skills related to technology,
databases and AI (Abis and Veldkamp, 2024). Even foundational papers in the economics literature
in this area have required the authors to use their own discretion (or those of colleagues or experts)
to identify which skills in a database are most relevant to their phenomenon of interest (Autor et al.,

14The provider notes some potential issues with the reporting of skills in the data. The profile data is combined
from multiple sources which gather publicly available profiles, but around May 2021, user skills disappeared from the
majority of public profiles. The provider imputes (predict) skills after that data, and notes whether the skill on a
profiles is reported or imputed. However, I do not know the imputation algorithm, and so I limit the analysis sample
to the years through 2021 only.

15The data provider notes in their documentation that the skill data are imputed, rather than collected, from 2022
onwards.

16See https://www.onetonline.org.
17Notable examples include (Autor et al., 2003).
18The O*NET data is periodically revised to reflect the changing structure of the US workforce. Although it was

revised in 2019, I use the version from before this revision to match the O*NET codes in my version of the Lightcast
data, which were based on the taxonomy before the O*NET revision took place.

19Indeed, precisely because of the growing interest in the “future of work”, the construction of taxonomies that
can make sense of emerging sources of skills data and inform career development pathways is an active and ongoing
area of research among businesses and information agencies. For example, see recent efforts by Nesta in the UK or
Lightcast.
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2003). The small number of papers in the emerging literature on the impact of AI technologies have
generated taxonomies based on their own judgment (Brynjolfsson et al., 2018).

Like this prior work, this paper groups individual skills into categories for measurement pur-
poses. To do so, it relies on categorizations created by the data providers. These providers use
data-mining and clustering techniques to group skills together into different technology domains,
like “data science”, “AI”, or “Big data”. I rely on this pre-existing taxonomy, although Appendix C
details the specific skills that fall into each of the technology categories used in this analysis.

I group data science and AI skills together and refer to them as “algorithmic” tools and we
conduct comparisons between these technologies and other business technologies that do not fall
into this category. We focus on data science and AI because, as discussed above, they are the key
inputs to the recent wave of technologies that directly make decisions, and our theoretical arguments
are based on the coordination costs that arise when these automated decision-makers are directly
integrated into a production context.

Measures of algorithmic literacy indicate whether a job listing or employment profile have a
skill that falls within our algorithms category, which includes AI and data science. The measure of
algorithmic literacy is constructed as the fraction of employees in business-facing occupations who
have technical skills in this category.

3.2.2 Domain expertise

Jobs are also encoded according to whether they require domain expertise, which as discussed above,
is defined as “knowledge of a specific, specialised discipline or field”. The measurement of domain
expertise in jobs is encoded consistently with algorithmic expertise. It is a binary measure where
jobs are coded as requiring domain expertise if a domain-related skill appears in a listing. The list
of potential domain-related skills jobs can require is extracted from the O*NET database, which
curates a comprehensive list of all of the possible domains with which US-based jobs may require
workers to know.20 These potential knowledge domains are extracted from the “Knowledge” table
in O*NET which delineates “organized sets of principles and facts applying in general domains.”21

From the full list, Computers and Electronics, Engineering and Technology, Telecommunications, and
Mathematics were removed because they potentially overlap with measures of algorithmic expertise.

It is useful to contrast this approach with one in which jobs are identified as requiring domain
expertise based solely on their titles. This approach would place the restriction on our analysis
that jobs with the same title cannot differ in the knowledge they require. Relaxing this restriction
is important for this analysis because it allows for an analysis of the diffusion of new skills into
occupations (i.e. sub-occupational change) rather than changes to the occupational mix which is

20See https://www.onetonline.org/find/descriptor/browse/Knowledge/.
21The domain categories identified in the O*NET knowledge set are Administration and Management, Biology,

Building and Construction, Chemistry, Clerical, Communications and Media, Customer and Personal Service, De-
sign, Economics and Accounting, Education and Training, English Language, Fine Arts, Food Production, Foreign
Language, Geography, History and Archeology, Law and Government, Mechanical, Medicine and Dentistry, Personnel
and Human Resources, Philosophy and Theology, Physics, Production and Processing, Psychology, Public Safety and
Security, Sales and Marketing, Sociology and Anthropology, Therapy and Counseling, and Transportation.
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central to the arguments in this paper.

3.2.3 Additional job characteristics

Beyond algorithmic and domain expertise, some analyses include indicators of skills related to
cognitive, social, character, and management job attributes. The construction of these job attributes
was based on prior work using the same data source and were constructed using the methods reported
in that paper (Deming and Kahn, 2018). As with algorithmic and domain expertise, jobs are coded
as requiring these attributes if the listing contains a related skill.22

3.2.4 Employers’ technology investments

Obtaining consistent, firm-level measures of IT investment that span multiple years has been a per-
sistent challenge in the academic literature. IT investments are not consistently recorded on balance
sheets, so scholars have had to leverage alternative data sources to create proxy measures, such as
hardware investment measures collected by marketing firms through surveys, IT mentions recorded
in legal filings, and more recently, investment into complementary IT skills. The rationale behind
using labor expense to measure IT investment is that 1) it is a large component of a firm’s tech-
nology investment and 2) it is growing because much frontier software is open source (economically
free) and much of the hardware used is cloud-based and therefore not well measured by instruments
that record the firm’s owned servers and PCs.23 However, installing frontier software requires tech-
nical expertise, so the wages paid to technical personnel or the quantities of technological workers
employed by a firm may be a good proxy measure of a firms’ technological investment, even if the
software is free or hosted in the cloud. Studies using labor expense as a proxy measure of the firms’
IT investment include aggregate numbers of IT workers employed by the firm or when measuring
investment in specific technologies like machine learning, workers that have a specific technical skill
(Lichtenberg, 1995; Brynjolfsson and Hitt, 1996; Tambe, 2014).

This paper takes the approach used in this literature. The employer workforce data described
above allow construction of employer-year measures of the quantities of IT workers at a firm that
have skills in different technology categories. Measures of firms’ technology investments, then, are
operationalized as quantities of IT workers with technical skills in areas like data science, machine
learning, and cloud technologies. These are interpreted as proxy measures of the intensity of firms’
investments in each of these areas.24

22Deming and Kahn (2018) construct these job attribute measures based on whether a listing has a skill related
to the attribute. These skills, as reported in Table 1 of that paper, are: cognitive [problem solving, research, analyt-
ical, critical thinking, math, statistics], social [communication, teamwork, collaboration, negotiation, presentation],
character [organized, detail oriented, multitasking, time management, meeting deadlines, energetic], and management
[project management, supervisory, leadership, management (not project), mentoring, staff]. Deming and Kahn (2018)
also include writing, customer service, financial, computer, and software job attributes in their analysis but those
attribute families are not included in this analysis.

23These arguments likely hold particularly true for modern AI model expense which is increasingly based on an
open-source stack and run in cloud data centers.

24Like most firm-level measures, this approach records the firms’ investments with some degree of measurement
error.
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3.2.5 Financial variables, assets, and industry classification

From the Compustat-Capital IQ data, measures are constructed at the employer-year level of total
market value, employment, industry classification, the value of PPE (property, plant, and equip-
ment), and other assets. The use of Capital IQ financial data necessitates limiting the sample to
public firms. Industry variables for these firms are retrieved at the three-digit NAICS (North Amer-
ican Industry Classification System) level. Total market value was computed as described in an
existing literature relating intangible assets to firm value (e.g. see appendix describing variable con-
struction in Brynjolfsson et al. (2002)). It is computed as the value of equity at the end of the fiscal
year plus the value of preferred stock plus total debt which represents the total worth of a firm as
assessed by the financial markets. Assets are computed as total assets minus PP&E.

4 Results

4.1 Model-Free Evidence

Figure 1b illustrates growth in the incidence of algorithmic skills appearing in listings within a
three-year sample period spanning the years 2013 to 2016. Each x-axis tick in this figure is one
month and the y-axis is the coefficient estimate (β) from the logit regression ALGi = βtti+ϵi where
t indexes months since January 2013 and ALG indicates whether an algorithmic skill appears in a
job listing. The series of estimates indicates that the likelihood that an algorithmic skill appears in
a listing in this sample grows steadily in the earlier part of the sample before flattening out in the
later part of the sample period.

Figure 2b shows the extent to which specific, common technical skills are bundled with domain
expertise. Skills associated with higher values (further to right) are more often found in jobs that
also list domain expertise in their requirements, and skills in dark blue are those that fall under
the algorithmic category. This comparison shows that skills associated with the use of algorithms
and data science are more commonly bundled with domain expertise. In this regard, these skills
have more in common with skills like Excel and ERP systems that are commonly used by business-
facing occupations. Figure 2a illustrates the extent to which skills associated with a broader class
of categories appears in non-IT occupations. Higher values indicate skills more likely to appear in
a broader variety of occupations. These figures indicate that algorithmic skills, those colored in
dark blue, are less concentrated by occupation than other technical skills. Skills related to pre-
dictive analytics, data science, and data analysis are particularly dispersed and only slightly less
so then general skills related to the Microsoft Office Suite which are commonly used by workers
across all knowledge-based occupations. This finding is consistent with the claim that employers are
increasingly bundling algorithmic skills in occupations where domain expertise can be found.

Data on job openings are valuable because they (i) indicate employer preferences and (ii)
can reflect immediate adjustments by employers and serve as a leading indicator of labor market
changes. However, these data cannot tell us whether the posted listings indicate hard requirements
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or a “wish list” from employers, or whether the vacancies that require these skills are ever filled.
Therefore, I turn to corporate workforce data to investigate whether changing employer preferences
manifested in workforce changes.

Figure 3a illustrates how the dispersion of technical skills in business-facing occupations has
been changing over time within these firms. In this figure, the y-axis is the intensity with which a
skill appears in these occupations and all levels are depicted relative to their base rates in 2008. The
trend line for AI and data science skills is shown in blue. These trend lines indicate that there has
been steady growth in the rate at which AI and data science skills have penetrated these occupations.
By 2021, skills related to these technologies appear in about 10% more occupations than thy did
in 2010. Infrastructure technologies like investments in networks and the cloud became increasingly
specialized. Fewer workers in business occupations needed the skills related to these technologies.
The incidence of mobile skills in this worker sample remained flat in these occupations.

Figure 3b in the top right quadrant shows levels of this ORGALG measure across different
industries. Unsurprisingly, it is highest in the Information and Professional Services industries, which
include technology and finance firms. This is consistent with recent evidence on the prevalance of
these technologies in these two industries (Lohr, 2024). Retail has climbed rapidly, perhaps reflecting
the growing use of consumer data for prediction. Levels of this skill measure are lower in the Arts
and Health industries although they have been climbing steadily in Healthcare reflecting the growing
use of AI in healthcare domains.

Figure 3c in the bottom left quadrant depicts changes in the ORGALG measure from year-
to-year, where firms are separated into quartiles according to their market values in 2021, the final
year of the sample. This figure suggests that this figure is highest in higher value firms, and that
it diverges in the first two-thirds of the sample, as might be expected, for instance, if workers with
this combination of skills are a scarce employee resource that higher value firms can better attract.
In the last few years of the sample, however, this figure appears to begin converging again across
different quartiles, suggesting that supply of these workers may have been adjusting to demand.

The bottom right quadrant (Figure 3d), using data from the last year of the sample, plots
firms’ investment in AI technologies against the ORGALG measure. From this plot, we can see that
firms tend to concurrently invest in both the workers that can install these technologies and business-
facing workers with the complementary skills to apply these technologies to business domains. The
largest circles, colored in blue, are those commonly referred to as “big-tech” firms.

4.2 Regression tests of changes in firms’ hiring patterns

To test the proposed hypotheses, I investigate if domain expertise is more likely to accompany the
use of algorithmic tasks in job listings. The general form of the logistic regression used to evaluate
these correlations is the following:

DOMi = βALGALGi + γi + ϵi (1)
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Figure 4a illustrates estimates (βSKL) from regressions of individual data pipeline activities
on domain skills to investigate where domain expertise might be most important when using data
science tools. The coefficient estimates on analytics are almost as high as presentation and higher
than decision making which is consistent with the statement that data science and analysis tools
require domain expertise. By contrast, data management and modeling are negatively correlated
with domain expertise so these tasks are confined to specialist jobs in the vacancies in the sample.
The unit of observation i in this model is the job listing. The dependent variable is a binary
indication of whether a listing i requires the applicant to have a form of domain expertise (DOM).
The measures on the right-hand side indicate if the listing requires skill in any of the three technology
categories. It also includes a vector of control variables (γ) that includes job title, industry, and a
measure of the logged number of skills in the job ad.

Figure 4b reports the results of Equation 1 where different technical skills are placed on the
right-hand side, and different job attributes, including domain expertise, are the dependent vari-
able. In this figure, we observe positive correlations between algorithmic skill and domain expertise.
Because these tests include job-title fixed effects, these correlations indicate that algorithmic tech-
nologies tend to be bundled in jobs requiring domain expertise in a way that has not occurred with
other data technologies (H1).25 We also see positive correlations between the use of algorithmic
technologies and cognitive job attributes and negative correlations with management-related job
attributes. It is reasonable that for high-level managers, and jobs that require a high-degree of
personal-facing skills, it may be less critical for workers to be able to integrate data and decisions.

Using the workforce data, Table 3 reports regressions of firms’ investment activities on whether
jobs within the firm are likely to require algorithmic literacy. Columns (1) through (4) report
correlations between the need for decision-making in a job, as indicated by the O*NET database,
and algorithmic literacy spreading to the job. All regressions are at the firm-occupation-year level.
These regressions indicate that workers in occupations that require decision-making are also more
likely to have algorithmic skills (H2). This is true with and without firm fixed-effects, and it is
true whether the decision-making measure indicates the importance of decision-making to the job
(columns 1 and 2) or the level of decision-making ability required (columns 3 and 4). Standard
errors in these regressions are all clustered on employer.

Columns (5) and (6) in this table are at the firm-year level and the report correlations between
investment in algoriths and the extent of literacy required by business and management occupations
at the firm, conditional on other firm investment and size variables. These regressions suggest
that firms are concurrently making these investments; employers that hire workers who can install
algorithmic technologies also employ business-facing professionals who have skills in these areas.

25By contrast, correlations with database management tasks are negative, consistent with that task being specialized
within IT work. The full form of these regressions can be found in Appendix B.
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4.3 Regression tests of complementarities with firms’ human capital

Before discussing market value relationships, Table 3 reports correlations between firms’ investments
in algorithms and our main skill dispersion measure. Column (1) indicates that after controlling
for size, assets, and aggregate IT investment, employers are coinvesting in algorithms along with
business-facing workers who have algorithmic skills. The correlations are negative for employment
size and aggregate IT investment. The employment size figure, conditional on assets, likely reflects
organizations with large front-line workforces (e.g. customer service, retail) which should lower the
skill dispersion measure since it is taken over all of a firm’s employees. Column (2) includes employer
fixed-effects. Here, most of the correlations with the skill measure are absorbed, indicating that
most of these measures reflect heterogeneity in employers. However, the main correlation of interest,
between investment in algorithms and business-facing workers with algorithmic skills, persists, which
means that firms in our sample are concurrently changing these inputs over the course of our panel.

Table 4 embeds organizational skill measures, along with technology investment measures into
a regression framework that tests if the market assigns higher value to firms that concurrently invest
in these two factors. Market value is a useful indicator for two reasons. First, firms need time to
adjust new technologies to their production context, and most evidence suggests that firms are not
yet realizing value from many of their investments in AI and analytics. Secondly, examining market
value has the benefit that the value of workforce investments captured in rising market value can
be interpreted as intangible assets, which are valuable to the firm and should have implications for
future productivity. This approach is similar to that used in prior work to test whether workforce
complements build new intangibles and raise the returns to broader investments in information
technology (Brynjolfsson et al., 2002). The form of the regression is:

Log(MV )it = Log(AT )it + TECHit +ORGALGit + (TECHit ×ORGALGit) + γit + ϵit (2)

In this model, i indexes the firm and t indexes the year, TECHit is an indicator of investment in
different technologies measured as described earlier, ORGALGit is the measure of skill dispersion,
and γit is a vector of fixed-effects including year, industry at the three-digit NAICS level, and
depending on the specification, employer fixed-effects. Columns (1) through (3) in Table 4 have
industry and year fixed-effects but do not include employer fixed-effects. Column (1) is a baseline
regression showing correlations between IT investment and market value. The coefficient estimate
is similar to prior work that reports estimates from market value regressions. In column (2), adding
a measure of algorithmic skills shows that firms that have invested in technical workers with data
science and AI skills have a higher market value. The coefficient estimate on IT is no longer significant
after adding this measure, which indicates that the ALG measure separates out frontier firms for
which technological investment is expected to generate capabilities that the market rewards.

Column (3) reports estimates from the full form of Equation 2, which includes the interaction
terms between the technology and skill measures. These estimates indicate that the organizational
skill measures are associated with higher levels of market value. Importantly, these workforce skills
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are necessary complements to investing in algorithms. Moreover, investments in these technologies
themselves, without the supporting workforce engineering exhibit no significant correlations with
market value (H4). This pattern of estimates suggests that firms that invest in algorithmic decision-
making and are adjusting the skill content of their workforce in the way described in this paper are
building valuable intangibles (t=1.90). Column (4) is the same specification, except that it includes
employer fixed-effects, which should absorb any unobservable and time-invariant heterogeneity. Some
of the positive coefficients on aggregate technical investment disappear, which suggests that part of
the estimate on the IT investment measure reflects firm-level heterogeneity. However, the positive
coefficient estimate on the interaction term for algorithmic technologies is robust to including firm
fixed-effects. It falls only slightly in magnitude. The pattern of results in this table indicates that
firms that invest in algorithms unlock the value of these investments when they are able to disperse
the human capital related to algorithms throughout the firm. In a final set of comparisons, Figure
5 reports the estimate on the main interaction term fom Equation 2 where the sample is split into
different size categories according to employment. This figure indicates that the market rewards
that firms receive from concurrently investing in these two factors are highest for the largest firms
in the sample.

Taken together, these analyses suggest that in the last decade, (i) employers adjusted hiring
practices to attract domain experts with expertise in algorithms, (ii) human capital related to algo-
rithmic tools spread to business-facing occupations, and (iii) employers that made these investments
jointly with matching technological investments realized higher market values, indicating that the
presence of valuable intangible assets in these firms. Together, these three pieces of evidence support
the primary conclusion of the paper that greater level of technical skill in a firm’s domain experts
is a valuable complement to its use of algorithmic decision-making.

4.4 Robustness tests

The evidence suggests investments in data science complement algorithmic skills in business and
management occupations. We can also conduct robustness tests that evaluate whether we find similar
results when substituting measures based in different technologies or in different skills. Figure 6a
shows the coefficient estimates on the interaction term on (TECHit ×ORGALGit) from Equation
2 when using TECH measures based in AI (which is the same as in our main regression), which
we compare with measures based in infrastructure technologies like networks and databases. If
workforce changes in business-facing occupations are particularly important for AI technologies, we
should only observe meaningful correlations for this skill-based interaction term with AI investment,
not with investments that firms make in other technologies. We do observe such a pattern in Figure
6a. Neither of the coefficients on the other interaction terms are significantly different than zero.
This pattern of estimates supports the argument that a correlation between market value and the
interaction term between AI skill and AI investment is not simply reflecting the type of heterogeneity
that would be picked up by other measures of technology investment. In other words, the correlations
we observe between value and the interaction between skills and AI investment are specific to AI,
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not general technology investment.
Figure 6b performs a similar comparison, again using the specification in Equation 2, but

instead of altering the technology measure, it retains AI as the technology measure for all regressions
and varies the skill measure within the organization. It reports the coefficient estimate on the
interaction term where the ORGALG measure in business-facing occupations is generated using
the prevalence of network and database technology skills in this segment of the workforce, rather
than AI skills. Again, we see that the market value correlations are only different from zero when
investment in AI technologies is accompanied by AI skills in this layer of the workforce. General
tech acumen dispersed within the business layer of the workforce does not appear to raise returns
to AI investments.

5 Managerial Implications

Adoption of algorithmic decision-making, and particularly predictive AI applications, has been dif-
ficult and uneven. Our evidence suggests that the human capital of leading, data-driven firms may
differ in important ways from that of firms that are lagging in this domain. If investments in
algorithms require substantial coomplementary workforce change, it may suggest considerable ad-
justment costs for firms seeking to adopt these management practices. High adjustment costs imply
higher levels of concentration for AI and algorithmic investment and competitive rents for firms
that have successfully installed the right workforce complements.

A corollary is that the costs of using data science technologies are continuously falling. Gen-
erative AI applications, for instance, represent a significant shift in how knowledge workers interact
with technology, making it more accessible and user-friendly than many previous information tech-
nologies. One of the most notable aspects of this shift is the ease with which employees can engage
in technical tasks using natural language interfaces. This reduces the time and effort required to
learn and use programming languages, making technology more accessible to a broader range of
professionals. A fall in the costs of performing this work suggests that employers may accelerate the
rate at which data analysis tasks are pushed to domain experts.

The implications of this shift for both managers and educators can be significant. From a
management perspective, generative AI tools can democratize technical skills, enabling a more
diverse range of employees to contribute to areas that were once the exclusive domain of specialists.
This can lead to more innovative work environments that emphasize the productive combination of
human creativity and computational power. Managers will need to adapt by focusing less on specific
technical skills when hiring and more on general problem-solving abilities and adaptability.

Another challenge for managers is that technical expertise has economic attributes that dif-
ferentiate it from other forms of expertise. For instance, frontier technical skills are known to derive
significant productivity benefits from geographic agglomeration (Saxenian, 1996; Fallick et al., 2006).
Moreover, rapid depreciation of technologies changes the economics of professions in which techni-
cal human capital plays an important role, which has implications for topics like gender diversity
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and skilled immigration that routinely attract scrutiny from legislators and managers. If a growing
number of occupations requires expertise with technology and algorithms, it may have implications
for the structure of labor markets for these professions.

For educators, the falling costs of technical skill acquisition associated with no-code and
generative AI technologies suggests a curricular reorientation. Although technical skills will continue
to remain important for specialized workers, there may be a greater emphasis on understanding how
to effectively interact with AI tools, interpret their outputs, and apply critical thinking to leverage
AI-generated content. Educators will need to focus more on educating students about how to guide
and evaluate AI output, rather than just how to perform the tasks that AI can now handle. The
results in this study suggest that this type of education will be needed for all majors, not just
technical majors. Institutions that have not traditionally been as focused on providing technical
skills to students, such as business schools, have observed a surge in interest in demand for courses
teaching data, analytics, and AI technologies (Eisenmann, 2013; Lohr, 2017; Guetta and Griffel,
2021; Becker, 2023). This study suggests that these changes may be an appropriate response to a
labor market that will increasingly demand algorithmic bilinguals.

6 Conclusions

This paper provides evidence from two different data sources that i) algorithmic literacy is be-
coming broadly dispersed across business occupations, ii) that this dispersion is occurring due to
complementarities that arise between technical skill and domain expertise, and iii) that the market
assigns higher value to firms that concurrently makes these workforce adjustments while invest-
ing in algorithmic tools. In doing so, it documents one important but early facet of the workforce
transformation that is occurring around algorithmic technologies.

Nonetheless, there are several limitations of this analysis that are worth noting. The data
analyzed here provide limited visibility into the degree and nature of the expertise required by
workers and the analysis is limited to the narrow question of how a a specific category of skills are
bundled into jobs. For example, the data do not record when domain experts require deep expertise
with a technology or instead, when interactional expertise, required to engage with developers and
builders of these tools, would be sufficient. These findings also leave open a number of important
and challenging questions about how to restructure decisions around AI technologies and where
firms should place oversight of algorithmic decisions.

There is significant scope for future work in this area. By most accounts, we are at the begin-
ning of a very large wave of investment in technologies that convert data into decisions, and research
about this phenomenon and the workforce transformation that will be required to accompany these
changes is in its infancy. There is a great deal to be learned about how to design organizations so
that humans can effectively work together with algorithms. Although this paper considers one facet
of workforce transformation, complements to AI and data science technologies will be wide-ranging.
They will likely include more sweeping changes to workforce skills, as well as other non-labor fac-
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tors needed to drive these capabilities (Rock et al., 2024). Firms’ information capabilities will also
continue to evolve and algorithms will become easier to deploy as better software and tools be-
come available, which will lower the costs of adoption and further accelerate the diffusion of these
technologies into new jobs.

Indeed a key limitation of this paper, like most research on technology and work, is that it
takes a static view. At this early stage of adoption, there is still relatively little evidence that the use
of these technologies has broad labor market consequences (Acemoglu et al., 2022). Stronger causal
evidence of the impact of these workforce changes on performance may require allowing firms more
time to adapt to this new mode of production. Additionally, new technologies for data collection,
analysis, prediction, and visualization will offer improved capabilities to generate insights. As this
boundary pushes forward, it will continue to change markets for these skills, and continue to raise
new questions about how employers should integrate algorithms into the workflow.
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Figure 1: The growth of algorithmic skills in job listings

(a) Sample listings with algorithmic and domain expertise
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Figure notes: Figure (a) shows sample listings for jobs that require familiarity with both algorithmic tools (highlighted in
yellow) and domain expertise (highlighted in orange), related in these examples to marine biology and finance. These listings
and screenshots were extracted from the website Indeed.com. Figure (b) shows the coefficient estimates and standard error bars
on the regression ALGi = βmonthi + ϵi for each of the months from 2013 onwards (omitting January of 2013), where i indexes
job listings and ALG indicates whether an algorithmic skills appears in a listing.
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Figure 2: Algorithmic skills, domain expertise, and job listings
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(a) Bundling of technical skills with domain expertise in job listings
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Figure notes: Figure (a) indicates the extent to which different technical skills are bundled with domain expertise. Skills in
dark blue are those associated with the algorithmic category.Figure (b) indicates the fraction of times a skill appears in listings
outside an IT occupation where a value close to 1 means that skills is almost always appearing in job listings for non-IT
occupations.
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Figure 4: Characteristics of job listings with ALG skills
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Figure notes: This figure depicts correlations between various categories of job characteristics and algorithmic skills appear-
ing in job listings. Each vertical bar is a separate regression of the form CATEGORYi = αALGALGi + αDATADATAi +
αNETNETWORKi+Log(Skills)i+γi+ϕi+ ϵi where CATEGORY is one of DOMAIN, COGNITIVE, SOCIAL, CHAR-
ACTER, or MANAGEMENT, i indexes the listing, γ and ϕ are occupation and industry fixed-effects respectively, and
Log(skills) is the log of the number of skills in the listing. The point estimate that is shown is the coefficient on αML from
each regression and the vertical bars indicate 95% confidence intervals.
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Table 1: Summary statistics for firms (2018)

Variable Units Mean Std. Dev. N

Market value Millions (USD) 46456.1 189437.4 1509
Assets Millions (USD) 48694.0 230567.6 1509
Prop., Plant, and Equip. (PPE) Millions (USD) 3447.3 11102.9 1509
Employment Thousands (Employees) 24.7 78.4 1509
Data capital Tech skill count 1130.3 7323.7 1509
Network capital Tech skill count 276.7 1622.5 1509
Alg capital Tech skill count 59.2 411.8 1509
IT capital Tech skill count 1855.7 10483.1 1509
ORGALG Standardized Value 0.0 1.1 1509

Table notes: This table reports summary statistics for firms in the 2018 cross-section of the workforce
sample. The year 2018 was chosen because it is the midpoint in the panel window.

Table 2: Industry distribution of corporate workforce sample (2018)

NAICS 2 Sector N

11 Agriculture, Forestry, Fishing and Hunting 1
21 Mining, Quarrying, and Oil and Gas Extraction 38
22 Utilities 36
23 Construction 12
31-33 Manufacturing 432
42 Wholesale Trade 42
44-45 Retail Trade 68
48-49 Transportation and Warehousing 39
51 Information 309
52 Finance and Insurance 327
53 Real Estate and Rental and Leasing 31
54 Professional, Scientific, and Technical Services 67
56 Administrative and Support and Waste Management Services 31
61 Educational Services 9
62 Health Care and Social Assistance 29
71 Arts, Entertainment, and Recreation 5
72 Accommodation and Food Services 25
81 Other Services (except Public Administration) 1

Table notes: This table reports the distribution of firms across NAICS 2 digit industries in the 2018
cross-section of the firm sample.
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Figure 5: Effects by employer size
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Figure notes: The y-axis indicates the coefficient on the interaction term between algorithm investment and skill dispersion.
The x-axis divides firms by employment quartile where “1” is the smallest firms and “4” is the largest firms.

Figure 6: Robustness tests using alternative measures of TECH and ORGALG
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Figure notes: The top facet illustrates placebo tests when using other measures of TECH in the regression Log(MV )it =
Log(Assets)it + TECHit +ORGALGit + (TECHit ×ORGALGit) + γit + ϵit. The bottom facet illustrates the coefficient on
the interaction term when using other measures of ORGALG.
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A Description of corporate workforce data

This section discusses the Revelio corporate workforce data and presents comparisons of these workforce
data with administrative data sets with known sampling properties. The purpose of this comparison is to
discuss any limitations sampling restrictions might impose on the estimates presented in the main paper. To
evaluate coverage in these data, comparisons of the workforce data are presented below with three different
data sources: i) the occupational distribution of US workers reported by the Bureau of Labor Statistics
(BLS), ii) the distribution of worker employment by NAICS industry, and iii) how employment is distributed
across US states.

A.1 Data generating process and potential sampling inconsistencies

Revelio is a workforce intelligence company that federates data across a wide range of Internet sources
including federal databases, professional networking sites, and job posting aggregators. This analysis relies
on their workforce, position, and skill databases which capture data on the movements of a very large sample
of employees across firms, the job titles they hold, and the skills they acquire. Data on employment spells at
scale are not collected except in resume banks so these types of data are particularly useful for studying the
stock of workers with different skills and jobs within a firm-year, and the flow of workers of different types
between organizations.

There are potential issues when using data sources of this type. Members of the US workforce partic-
ipate on professional networking sites unevenly. Moreover, workers can be selective about what information
they include on these sites, and what they omit. These choices generate measurement error when these data
sources are being used to understand a firm’s stock of skills or occupations. Prior work discusses some of these
considerations (Horton and Tambe, 2015), but the next sections calibrate specific strengths and deficiencies
in terms of coverage. To the best of my knowledge, there are no data sets on employee skills that can be
used for direct comparison. Measurement error in this data set is discussed later in the section.

A.2 BLS-SOC share comparisons

The distribution of Revelio workers across occupations is shown in Figure 7a. Figure 7b presents differences
in shares of the major occupational groups as reported by the BLS and represented in the Revelio data,
where the assignment of workers to SOC areas in the Revelio data is provided by Revelio. The blue line
indicates no (zero) difference in shares such that bars to the right (left) are those occupations where the
occupation accounts for a higher (lower) proportion of workers in the BLS data than the Revelio data.

From this comparison, we can see that “white-collar”, knowledge-intensive occupations like manage-
ment and Information Technology work tend to be over represented in the Revelio data set whereas front-line
occupations in sectors like manufacturing, production, and transportation are underrepresented. This is not
a surprise given that these data are gathered from professional networking sites on which white-collar workers
tend to be over represented. The length of each bar is the difference in shares across these data sources. The
largest imbalance in occupations in Management. The difference in the share of total workers that managers
account for in the Revelio data set (15%) and the BLS (7%) is about 8% percentage points.

A.3 NAICS Industry comparisons

Employment comparisons at the North American Industry Classification System (NAICS) industry level are
reported in Figures 7c and 7d. These industry level comparisons are conducted at the 2-digit NAICS level
where the underlying allocation of workers across industries is taken from the Occupational Employment Sur-
vey data. Industry classifications in the Revelio data are generated by assigning employers to industries and
like the occupational assignments, are directly reported by Revelio for each employee. The share differences
we can observe in this comparison are consistent with the earlier observation that white-collar professions
are overrepresented in the Revelio data set. Technology, finance, professional services, and manufacturing
industries account for larger shares of employees in the Revelio data than they do in the BLS data. By
comparison, healthcare and construction account for smaller shares.
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A.4 Geographic (state) comparison

A final comparison, shown in the bottom panel (Figures 7e and 7f) is state-level comparisons. This comparison
evaluates the reported geographic location of workers in the Revelio data set with the distribution of workers
across US states. Unsurprisingly, we can see that states with significant industry representation for finance
and technology (such as New York) account for a relatively larger share of workers in the Revelio data. The
largest imbalance is in North Dakota, where industries like oil extraction and agriculture play a larger role
in the state economy.

A.5 Discussion

In sum, when we consider the spread of AI technologies into occupations, industries, and geographies, workers
in the Revelio data set are likely to be overrepresentative of those industries, occupations, and sectors that
are likely to be most impacted by these technological changes.

Having greater quantities of workers in the database from some sectors and occupations will affect
the precision of the measurement, but this may fall into under normal, random measurement error if those
workers who do report their skills are not very different from those who do. The number of workers in the
database from each Fortune 500 firm is fairly large though, so this type of measurement error should not
be very large. Even in underrepresented occupations and industries, the database should produce a fairly
high-quality signal of the skill content of a profession.

A less innocuous issue is that the reporting of skills themselves may be inconsistent. Workers in some
occupations and industries may be more inclined to report these skills on their profiles. They may consistently
report skills that are likely to lead to future employment opportunities, but inconsistently report skills that
the market does not deem to be particularly valuable. This can impact the interpretation of the magnitudes
of the coefficients in the main regressions (e.g. market return to a marginal database engineer), although it
should not impact the sign and direction of these estimates.
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Figure 7: Revelio data distributions
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Alabama
Alaska
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Arkansas
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Connecticut
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District of Columbia
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Illinois
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Kansas
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Maine
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Massachusetts
Michigan

Minnesota
Mississippi
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Nevada
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New Mexico

New York
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North Dakota
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South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
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(f) States

Notes: These three figures illustrate the difference in compositional shares between the Revelio and BLS data sets. The top
row is comparison of occupations. The second row is comparison across NAICS industries. The third row is comparisons across
states. The length of each bar for plots in the second column is computed as the difference in the share that the worker category
accounts for in the Revelio data and in the administrative data. For instance, Management workers comprise 15% of the Revelio
data set and 7% of the BLS data set so the length of the bar indicates an 8% difference between the two.
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B Additional robustness tests

In this section, we report the results of additional robustness tests.
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C Categorizing skills into technological areas

A key measurement task for this analysis is to use the skills embedded in job listings or reported by employ-
ees on their profiles as an indicator of having some measure of expertise with a technology. This requires
constructing a mapping from thousands of skills to the broader technological areas to which they are related.
For instance, skills such as “Oracle DB“, “MySQL“, and “Relational Databases“ are all indicative of a worker
having expertise with database technologies.

This is not an easy task, as it requires some measure of discretion. Therefore, rather than construct
such a taxonomy from scratch, I rely on an existing taxonomy structure overlaid by the data provider
that categorizes skills into technological groups. Th data science team of this data provider uses clustering
techniques to place skills into a taxonomy, and the approach combines skills into common groups if they
inhabit a similar area of the skill landscape after clustering. Labeling of technological groups is done after
clusters emerge in the skill landscape. The default skill clustering, used in this analysis, is at fifty groups.
The skills that appear in each of these categories, as constructed by the data provider, are shown below.

The provider for the job listings data also provides a taxonomy through which to interpret the detailed
skills data that appear on job listings. However, to maintain consistency across the analysis, the skills in the
job listings data were mapped to technological categories by harmonizing them with the Revelio taxonomy.
For example, the ’Algorithms’ category was created in the job listings data by identifying skills in the
listings data that had a match with one of the skills in the same category in the workforce data. Matches
were identified manually, to account for minor differences in case or how skill names were standardized by
the different providers.

C.1 Technical skills in the job listings data

Algorithmic skills. Machine Learning, Decision Trees, Random Forests, Recommender Systems, Mahout, Support
Vector Machines, Artificial Intelligence, Predictive Modeling, Predictive Analytics, Predictive Models, Data Mining,
Deep Learning, Neural Networks, K-Means, Cluster Analysis, Natural Language Processing

Data management. SQL, MySQL, Structured Query Language, database management, database administration,
data cleaning, data extraction, database querying, Big Data, Apache Hadoop, NoSQL, MongoDB, Apache Hive,
Splunk, MapReduce, PIG, Cassandra, SOLR, Sqoop

Data collection. Objective C, Swift, HTML5, Javascript, HTML, iOS, CSS, Cisco, Network Engineering, Network
Administration, Computer Networking, Network Support, Network Concepts and Terminology, Data Communica-
tions, Network Installation, Wireless Local Area Network (LAN), Network Management System, Network Infrastruc-
ture

C.2 Technical skills in the workforce data

Information Technology (IT). software testing, software engineering/software design, software training, soft-
ware documentation, software installation/laptops, software development life cycle, embedded systems/embedded
software, software,software architecture, software licensing, software quality assurance, software implementation,object
oriented software, software deployment, open source software, software asset management, software project manage-
ment, software integration, software development life cycle (sdlc), software development, release management, unix,
ftp, object oriented design, oop, c++/c, c++ language, microsoft visual studio c++, visual c++,c/c++, windows
server, windows server 2008/windows server 2003, .net/asp.net, unit testing, it governance, sdlc, bash, shell, linux,
object-oriented programming, it audit/cisa, assembly language, servers, user acceptance testing, it, support/server,
object-oriented programming (oop), continuous integration, it infrastructure management, operating systems,visual
basic for applications (vba), information technology, shell scripting/unix shell scripting, linux system administration,
code review, server administration, agile testing,regular expressions, system testing/system integration testing, pow-
ershell, ldap, orm, vb.net,linux kernel, vdi, ibm rational tools, nas/enterprise storage, smtp sap, ivr, ibm iseries, asp,
weblogic, dos, ibm aix,ado.net/asp.net ajax, asp.net mvc/linq/entity framework, vsam, raid, it operations
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Network. lan-wan, lan, ssl, ssl certificates, wan, network operations, ip networking, computer networking, voice over
ip (voip)/internet protocol (ip), network troubleshooting,network architecture, network security,network development,
computer network operations, wireless networking, network administration, san/storage area networks/netapp, in-
ternet protocol suite (tcp/ip), tcp/ip, data mapping tcp/ip protocols, routing protocols/switching,switches/routers,
routing/qos, wifi, dns/dhcp, ethernet, wireless, mpls, netcool, ccna/ccnp, putty, wimax, snmp

Data. master data management, spatial databases/web mapping, data warehousing/etl, database administration,
database, database security, metadata/metadata management, oracle sql developer/oracle database, data entry,data
quality, data acquisition, data management, data processing, data integration/data warehouse architecture, data mi-
gration, database design,data collection, db2, sql, pl/sql, mssql/ms sql/ms sql server, sql server management studio,
oracle sql, sqlite, mysql/php,performance tuning/sql tuning, oracle pl/sql development,sql server, microsoft sql server,
extract/transform/load (etl),sybase, t-sql/ssis/ssrs, teradata, sap hana,jsp/jdbc, edi, sqr, rdbms, oracle rac, ibm db2

Mobile. android, objective-c/ios development, mobile device management, wireless technologies, wireless communi-
cations systems, mobile application development, swift/xcode, android development/android sdk

Internet. front-end,web analytics, cascading style sheets,website development, web services, website updating/web-
site administration, web marketing, j2ee application development/j2ee web services,web 2.0, web applications, re-
sponsive web design, web development,basic html, html + css, html scripting, xhtml, html 5/css3, html5/bootstrap,
html/css, cascading style sheets (css), django, css, tomcat/jboss application server,nginx, internet protocol suite,
node.js/react.js, hosting, ajax, client/server, search engine optimization (seo)/search engine marketing (sem), angu-
larjs, jquery/jquery ui, fiddler, javascript, wireshark, java script, lamp,selenium/selenium webdriver,jsf/jpa, soap,http,
backbone.js,websphere/websphere application server, .net framework/asp.net web api, soapui, typescript, jmeter

Big Data. distributed systems/scalability, mongodb, hive/apache pig, docker/devops, middleware, data center,
centos/debian, hadoop/apache spark/mapreduce, ubuntu, server architecture, red hat linux, high performance com-
puting, vms,socket programming, olap, soa, websphere mq, multithreading, service-oriented architecture (soa), ibm
tivoli, hive/apache pig

Cloud. microsoft azure, windows azure, amazon services/aws, cloud-computing, cloud computing, amazon web ser-
vices (aws), cloud applications, vmware, openstack, vmware esx/vmware infrastructure/vsphere

Data Science. data visualization, data mining, statistical data analysis, big data, data modeling, data analytics/-
data science/big data analytics, marketing analytics, quantitative analytics, analytics, business analytics, predictive
analytics/predictive modeling, pandas, tableau, nosql/redis, numpy, R, scala, spark, julia, pyspark

AI. machine learning, natural language processing, image processing/computer vision, artificial intelligence, tensor-
flow, pytorch, scikit-learn
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